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Abstract

One of the main applications of generative models has been image inpainting, or image
completion. Image inpainting has been utilized for various purposes, of which include removing
background objects and restoring damage from photos of daily life. However, very few image
inpainting methods up to date have applied inpainting to the reconstruction of artworks, possibly
due to a mainstream focus on the technical rather than applicative aspects of image completion.

Thus, we propose three inpainting models for the recovery of artworks as the majority of
inpainting models are currently evaluated on real-life images such as Places2 and ImageNet and
hence may not produce visually plausible results for art pieces. The first two models are as follows:
the partial convolutional inpainting model (PConv), which avoids the problem of blurriness inherent
in fixing initial pixel values in the masked area of an image, and Globally and Locally Consistent
Image Completion (GLCIC), a GAN (generative adversarial network) with an added local
discriminator on top of a global discriminator for both local and global visual consistency. The final
model evaluated is a novel, integrated model - PConv-GAN - where the standard zero padding of
the convolutional layers of GLCIC is replaced with partial convolutional-based padding. The three
models are then evaluated on a collection of Impressionist artworks by L! loss and PSNR (peak

signal-to-noise ratio).



1. Introduction

Generative models are deep-learning models that are capable of producing images through
modeling patterns in the image dataset they are given. They have many applications, of which
include turning low resolution images to high resolution ones or black and white images to colored
ones, among image-to-image translation, text-to-image translation, video frame prediction, and
much more. One of the applications of generative models is inpainting, and although the origins of
inpainting without machine learning can be traced back to as far back as a few centuries since
photos were developed [1], inpainting with artificial intelligence only started developing
considerably several years ago starting with Context Encoders [2]. Numerous approaches to
inpainting subsequently have been made over the course of the past few years. Notably, nearly all
those approaches were evaluated on real life images of datasets such as but not limited to ImageNet
[3] and Places2 [4]. This trend can be attributed to a general focus on creating state-of-the-art
models for benchmark datasets that all virtually contain real life images. Thus, approaches with
respect to artworks are relatively scarce, even though artwork recovery itself is an arguably
important topic — it preserves works that may communicate important messages or reflect historical
trends. Hence, this paper emphasizes the potential application of deep-learning inpainting to art
recovery while comparing two models - PConv (Partial Convolutions) [5] and GLCIC (Globally

and Locally Consistent Image Completion) [6] - evaluated on a custom art dataset.

2. Related Work

Approaches to inpainting are generally separated into two categories: non-machine learning
and learning. Non-machine learning approaches solely rely on propagating appearance information
from neighboring pixels, which results in several acknowledged problems. The first is that such
models can only produce visually plausible results when given small holes in which the color and
texture variance is small. When bigger areas are missing from the image, the models generally
produce outputs that may be over-smoothed or structurally unsound. This problem is particularly
amplified by the models’ lack of semantic awareness. Another issue is the models’ inability to
produce novel objects, which may also be especially a problem when much information from the
image is missing. Examples of non-learning approaches to inpainting include patch-based methods,
where the model iteratively searches for relevant patches of information in the image’s non-hole
regions. Such patch-based approaches are often computationally expensive, and although
PatchMatch [7] speeds it up with a faster algorithm, it is still not real time and the problems

inherent in non-learning methods are still prevalent.



Deep learning approaches have proved to produce superior results compared to non-learning
approaches in inpainting. They are able to generate novel objects in the missing regions and display
a knowledge of semantics. However, many are prone to blurry outputs, and at times, illogical
structures. Liu et al. [5] recognize the issue of blurriness with inpainting methods and attributed it to
the application of convolutional filters over both valid pixels and pixels with substituted values in
mask. The solution was to apply convolutions only to valid pixels, creating the approach of partial
convolutions. Their model based on partial convolutions were able to reach state-of-the-art
inpainting results — the first model proposed in this paper will be the partial convolutional

architecture evaluated on artworks.

Another deep learning approach in inpainting, GLCIC (Globally and Locally Consistent Image
Completion) was proposed by lizuka et al. [6], which built upon the encoder-decoder architecture
proposed by Context Encoders by including two discriminators, global and local. The global
discriminator views the entire image while the local one evaluates the completed region, ensuring
both global and local consistency. Essentially, lizuka et al.’s model is a GAN but with specialized
global and local discriminators. The model was able to handle arbitrary inpainting masks and

produce high resolution images — thus, the second model proposed in this paper is based on GLCIC.

3. Methodology

3.1 Dataset and Environment

The dataset in which the two models were trained on was a custom dataset created by filtering
WikiArt [8] for Impressionist landscape and cityscape works in the public domain. The dataset also
includes files found on a Claude Monet dataset provider by Varnez on Kaggle [9]. There are 5,124
total images in the dataset, 3756 from WikiArt and 1368 from Kaggle, with a 90% to 10% train to
test split.

As seen by comparing Fig 1 and Fig 2, the contents of the custom dataset are noticeably

different from the natural images ImageNet contains.



Fig 2. Sample images from ImageNet.

The two models were each trained on a NVIDIA Tesla P100-PCIE GPU with 32 GB of RAM.

The integrated development environment was Google Colab Pro.



3.2 U-Net Architecture as Baseline for PConv

The partial convolutional network for inpainting has U-Net [10] as its baseline. U-Net was
originally intended for medical image segmentation, but its applications can extend to inpainting as
well. The architecture of U-Net consists of convolutional layers with ReLU (Rectified Linear Unit)
as their activation that downsample the input and then upsample it at the end, effectively creating a
U-shape. This choice in design allows U-Net to map contextual information end-to-end. The skip
connections that are employed in U-Net further strengthen the model’s capability in learning the
high-level and low-level semantics of an image through concatenating feature maps of previous
layers to later ones with the same dimension. Thus, U-Net is remarkable in its awareness of both
high-level and low-level features, making it ideal for inpainting models that aim to capture

important contextual information while also retaining fine-grained details in the output.
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Fig 3. Architecture of U-Net.

The partial convolutional network for inpainting replaces the convolutional layers in U-Net

with partial convolutions to generate more accurate pixel values in the masked area.

3.3 Intuition behind PConv

Many inpainting approaches fix initial values inside the masked, or covered, region of the
image, often with the mean pixel value of the dataset. Then, convolutional layers are applied over
the whole image, essentially treating both the real pixel values and the fixed pixel values as valid.
As a result, the upsampling process results in blurred outputs in the masked areas. Partial
convolutions address this problem by only performing convolutions on the “valid” regions of the
image, defined as regions with at least one pixel that is not masked. After a partial convolution is
performed, there will be more pixels produced around the masked area, and these pixels would be

considered as valid.



Consequently, after enough iterations, the masked area would finally be replaced by valid

pixels, producing the final result.

3.4 Loss functions for PConv

Let Iin be the input image with the hole, Lout the output of the generator/completion network,
and M the initial binary mask (0 for holes). Let Icomp be equivalent to the image of Lout but with non-

hole pixels set to ground truth. Let Kxa be the normalization factor for the nth selected layer.

Below are the L' losses, where Lhole and Lyvaiia denote the loss for the hole and non-hole pixels

respectively:

»C'holc = “ (1 - ﬂ{[) © (Imu& - Igf) ”1

Evalid = H Mo (Iout - Igf) “1

L! losses target per-pixel reconstruction accuracy. Note that Lvaiid is needed because the model
produces not only the initially masked area when it is fed an input, but also reproduces the areas

outside of the mask due to its architecture.

Below is the perceptual loss:

N-1
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Perceptual loss allows for comparison of high-level features, and thus may at times be more reliable
than L! per-pixel loss. ¥h represents the activation map of the nth selected layer of ImageNet-
pretrained ResNet50 [11]. ResNet50 was not pretrained on the custom dataset due to the dataset’s

limited size.

Below is the style loss:
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Style loss serves a similar purpose as perceptual loss. Gram matrices for autocorrelation are
calculated for each feature map.

Below is the total variation loss:
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L serves as a smoothing penalty for P, which is the 1-pixel dilation of the hole region. This

encourages the model to produce images with less noise.

The final loss function used for optimization with tuned hyperparameters is as follows:

Etatul = £1valid+6£hol(’+0-05£pm'('vptual+120(£s!yl(’,0“, +£s!yl(.'(. )+0-1£!u
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3.5 GAN Architecture as Baseline for GLCIC

GANSs contain two components — a generator which forges images and a discriminator
which discerns whether the input images are real (i.e. from the training dataset) or fake (i.e. from
the generator). The generator receives the prediction of the discriminator as feedback for
improvement. As the discriminator improves its classification of real or fake, the generator is forced
to model images that are closer to the distribution of real images. The design of GANs thus
represents a zero-sum game between the generator and the discriminator, where the ultimate goal is

to reach Nash equilibrium where both models maximize their optimality.

Training Data

Discriminator

Generator

Real/Fake
Backpropagation

Fig 4. Architecture of a vanilla GAN



GLCIC builds upon the vanilla GAN by having two specialized discriminators — global and
local. This choice in design enforces structural consistency of the whole image as well as the
masked region. GLCIC also has an encoder and decoder architecture for its generator to capture
semantic information from the input to model possible pixel values in the hole. It should also be
noted that GLCIC fixes mean pixel values of the dataset in the masked area for the input — this point

will be brought up again later in the results section.

Table 1. Architecture of the generator in GLCIC. “Output” represents the number of output
channels for that layer. Each convolutional layer is followed by a batch norm and has ReL U as its
activation except the last layer. The last convolutional layer is followed by a sigmoid activation to

predict normalized RGB pixel values.

Layer Kernel Dilation (1) Stride Padding | Output
Conv. 5x5 1 Ix1 2 64
Conv. 3x3 1 2x2 1 128
Conv. 3x3 1 Ix1 1 128
Conv. 3x3 1 2x2 1 256
Conv. 3x3 1 Ix1 1 256
Conv. 3x3 1 Ix1 1 256
Dilated Conv. 3x3 2 Ix1 2 256
Dilated Conv. 3x3 4 1x1 4 256
Dilated Conv. 3x3 8 Ix1 8 256
Dilated Conv. 3x3 16 1x1 16 256
Conv. 3x3 1 Ix1 1 256
Conv. 3x3 1 Ix1 1 256
Deconv. 4x4 1 Yax 1 128
Conv. 3x3 1 Ix1 1 128
Deconv. 4x4 1 ax Vs 1 64
Conv. 3x3 1 Ix1 1 32
Output 3x3 1 Ix1 1 3




Table 2. Architecture of the discriminators in GLCIC. FC stands for a fully-connected layer. Each
convolutional layer is followed by a batch norm and has ReLU as its activation except the last layer.
The last convolutional layer is followed by a sigmoid activation to predict whether an image is real

or fake. *Only the global discriminator has a sixth convolutional layer.

Layer Kernel Stride Padding | Output
Conv. 5x5 2x2 2 64
Conv. 5x5 2x2 2 128
Conv. 5x5 2x2 2 256
Conv. 5x5 2x2 2 512
Conv. 5x5 2x2 2 512
*Conv. 5x5 2x2 2 512
FC - - - 1024

3.6 Loss Functions for GLCIC

Let C(x, Mc) be the generator in functional form, with x as the input image and M as the
binary mask (1 for holes). Let D(x, M) be the discriminator in functional form.
The loss function of GLCIC consists of a weighted MSE (mean squared error) loss and a
BCE (binary cross entropy) or GAN loss. The combination of these two loss functions were shown
to provide training stability for Context Encoders, the backbone of GLCIC. Thus, GLCIC uses the

same loss function.

Below is the MSE Loss:

Lx,M)=||M® (C(z,M) — x) ||?

Below is the BCE Loss:

min maz E [ log(D(z, M)) +log(1 — D(C(z, M), M) |

E refers to the expected value over all instances. Minimax refers to the minimization of loss
for the generator and the maximization of the loss for the discriminator. A higher loss of the
discriminator in most cases means that the generator is producing images that are similar to the real

image distribution, hence lowering its loss.
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3.7 Partial Convolution-Based Padding GAN

We propose a new inpainting model based on Globally & Locally Consistent Image
Completion. Instead of the standard zero padding that was originally used in the GLCIC model, we

utilize partial convolution-based padding in this model.

Padding is an important feature of convolutional layers as it allows us to design deeper
networks by decelerating volume size while preserving information at the boundary of an image.
However, standard zero padding has the problem of adding extrapolated data to an input image.
Such added features may deteriorate the performance of the network - thus, we replace zero based
padding in GLCIC with partial convolution-based padding which solely conditions convolutional

output on valid input pixels (non-extrapolated).

x1|x2].. x1|x2] ..

olo|lo|lojJo| ol o
olojoc|o|lojlo| o

o(fojojo|oO

@ X (b) 1 (c) XPO

Fig 5. X represents the input image while 1 represents the matrix of ones that is of the same
dimension as X. Partial convolution-based padding utilizes XP?, the zero padded input image, and
1P, a matrix that indicates which pixels to perform convolutions on (the ones being valid pixels and
the zeroes invalid), while standard zero padding only utilizes XP?. The red and green boxes

represent sliding convolution windows.
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4. Results and Discussion

Input PConv GLCIC PConv-GAN GT

4 ol ¢ 4

z*ﬁéi_,z;ﬁ’h 2 ;._.ﬁll., 2. ;,ﬁhd R

Fig 6. Comparison of inference results using regular-shaped masks on aforementioned

impressionism artwork dataset. GT refers to the ground truth.
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Fig 7. Inference results of the partial convolutional inpainting model using irregular-shaped masks

on custom impressionism artwork dataset

Training Loss vs Validation Loss of PConv

—— frain_loss
val_loss

Loss

0 25 50 75 100 125 150 175 200
Number of 50 Mini-batch Iterations

Fig 8. Loss curve of the partial convolutional model
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Table 3. Comparison of models with PSNR (peak signal-to-noise ration) and relative L' evaluation

metrics. A lower score for L' is favorable, while a higher score for PSNR is favorable.

| L1 ‘ PSNR
PConv 0.0462 22.9
GLCIC 0.0127 31.1
PConv-GAN 0.00879 33.1

We can see the loss curve for the partial convolutional model in Fig 8 - training was halted
as soon as validation losses plateaued and training losses fell below the validation losses to prevent
overfitting. We do not display the loss curve for GLCIC and our proposed model because a GAN's
loss curve, which oscillates due to the minimax loss function, does not accurately represent the

generator's optimization and is hence not meaningful.

We chose two metrics for evaluating the models — L' and PSNR (peak signal-to-noise ratio).
L! targets per-pixel reconstruction accuracy between the output and the ground truth, while PSNR
targets the corrupting noise present in an output that affects its fidelity given a reference/ground
truth image. Based on both our metrics for L! and PSNR, our proposed inpainting model, Partial
Convolution-Based Padding GAN (PConv-GAN), performs better than both the partial
convolutional inpainting model and Globally & Locally Consistent Image Completion for regular
masks on our custom artwork dataset, as seen in Table 3. GLCIC for both metrics performs better
than the partial convolutional model, but the completed area is slightly blurry, possibly due to fixing
the mean pixel value, the problem PConv intended to fix. This issue is also apparent, though to a

lesser degree, for our model.

The partial convolutional model, which was proposed in 2018, later than GLCIC, performed
surprisingly poor for regular masks in our experiment. However, we can see that the model
performed reasonably for irregular masks, which is unexpected given how it would initially seem
that irregular masks seem more difficult for an inpainting model to deal with than regular ones.
Thus, we hypothesized that because the partial convolutional model was trained with irregular
masks that allowed for more sporadic information, the model primarily learned to interpolate
information between intermittent pixels, an act that is not as easily done with regular masks where
there is less information exposed. The original PConv model proposed by Liu et al. was intended to
be trained on irregular masks, which may imply the authors found that the model was more suitable
for such a particular type of mask as well. However, their official implementation of this model has

not been released yet, so this hypothesis remains inconclusive.
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5. Conclusion and Future Works

Inpainting is an important problem in computer vision and has been researched by numerous
technology companies such as NVIDIA and Adobe. Nevertheless, there is a lack of attention
concerning artwork-based inpainting compared to that of natural images. We find that our proposed
model is suitable for art recovery and performs better than the previously proposed inpainting
models of partial convolutions and Globally & Locally Consistent Image Completion at least on
impressionist artworks such as the ones in our dataset. Though the partial convolutional model does
not produce visually plausible outputs for regular masks, it is able to create structurally coherent
images when given irregular masks. GLCIC produces visually coherent outputs for regular masks as
well. Future works may include the design of novel models for art recovery or inpainting in general,
given deep learning inpainting is a relatively new field with numerous possibilities for

experimentation.
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