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Abstract
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#iEEETEES (Logic Errors) o )

Debugging is often the most time-consuming phase during program development,
lengthening the development time and lowering efficiency. Even though there are
currently existing tools that help raise debugging efficiency, their functions are largely
limited, as they only present a more comprehensive analysis behind the compiling and
running processes in order to save complicated steps in debugging; however,
developers are still required to evaluate the reasonability and suspiciousness of every
line of code. Unlike the current manual debuggers, this research aims to build a system
that automatically detects bugs* in the programs through program spectrum analysis
and information retrieval. In the section of program spectrum analysis, the system will
statistically analyze the suspiciousness of every code block in the input source code file
according to the provided test cases, later formulating an initial suspiciousness ranking
based on previous calculations. Afterward, the system retrieves historical files that

resemble the current source code and uses their suspiciousness rankings to modify the



initial suspiciousness ranking, generating the final suspiciousness ranking as the
system’s output. This research integrates the two techniques and optimizes the formula
of suspiciousness in program spectrum analysis and the comparison mechanisms in
information retrieval, reaching performances of higher comprehensiveness and

preciseness.

*The word “bugs” here refers to logic errors that cause wrong answers or runtime errors,

not syntax errors that lead to compile errors.)

1. Introduction

1.1 Background

In recent years, computer science and programming have become popular fields due to
their infinite potential for innovations as well as their significant contributions to the
globe. However, while developing projects ranging from single-file codes to cross-
platform software, most programmers are struggling to debug — a process to find the
errors that occurred in the codes and resolve them — and it turns out to increase

inefficiency and time consumption during the process.

Computer programming can be divided into four phases: identifying problems, finding
solutions, coding them, and debugging [1]. Relative to the first three phases, debugging
often makes the least number of changes, yet it usually requires the longest time length.
According to the CVP survey (figure 1), debugging has cost 50% (312 billion US
Dollars) of the global software developer wages, equivalent to the wages for designing

and building programs [2].



Impact of debugging on time spent developing code and its cost in terms of
wages per annum

® Fixing bugs

$156bn pa W Making code work
u Designing work
B Writing code

$188bnpa

Global software developer wages =
USDS$624bn p a.

Debugging (fixing bugs and making
code works) takes up 50% of
development time.

Debugging costs the global software
industry $312bn p a.

$124bnpa . $156bnpa

Source: Evans Data Corporation (2012), Payscale (2012), RTI (2002}, CVP surveys (2012)

Figure 1: Impact of debugging on time spent developing code and its cost in terms of

wages per annum.

Currently, multiple tools are able to assist developers to find bugs, such as debuggers
and reversible debugging software. By setting breakpoints and limitations in the
debugger mode, users can stop at lines that they think are suspicious, track the execution
routes, and monitor the changes of variables and memory allocations line by line [3].
On the other hand, reversible debugging software records all the memory access,
computations, modifications to variables, as well as calls to the operating systems. By
moving forward and backward among lines, the users can inspect the reasonability of
the current program states and identify the errors in the codes [4].

1.2 Motivation

Although there are currently techniques that help developers to detect bugs more
effectively, they still require developers to evaluate the validity of each program state
and determine the final location. Fundamentally, they can’t solve the problem of

manual evaluations and high time consumption.

1.3 Purpose

This research aims to develop an automated debugging system that analyzes the most

possible location of the bugs using test cases given by the users along with previously



fixed source code files that are comparable to current ones. The following are three

primary objectives of this research:
1) Develop algorithms that automatically localize potential bugs
2) Reduce or eliminate the time that the developers spend on debugging

3) Save the effort of the developers on assessing and locating bugs

1.4  System Architecture
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In the program spectrum analysis section, the buggy source code file is first inputted

and processed. A new file is created by integrating the original codes and a line-tracing



mechanism. Next, it is compiled and executed with input and output files provided by
the users, and the system generates a coverage matrix consisting of m block-hit spectra,
each recording whether the code blocks are traversed in the execution or not. The error
log records the result of every execution. By comparing the similarity between the
coverage matrix of each code block and error log, the system measures the
suspiciousness values, or the probability to contain bugs, of the code block — the higher
they resemble, the more possible that the code block is the reason that leads to failures

and contains bugs. Finally, an initial ranked list of code blocks is generated.

In the information retrieval section, the input source code is vectorized into a term
vector through the process of TF-IDF. It is then compared with the TF-IDF vector of
every dataset, a collection consisting of similar source code files, in the historical file
database. Of all datasets, one dataset with the highest relevance score is chosen. In the
dataset, all historical source code files are vectorized into term vectors through TF-IDF
and compared with the term vectors of the input source code file. The fixed buggy code
blocks list regarding each historical source code file then alters the initial ranked list of
code blocks to the extent based on the relevance score between the historical and input
source code files. Finally, a final ranked list of code blocks is generated and outputted,

indicating the suspiciousness values of each code block.

2. Related Works



Since this research is based on a variety of algorithms and theories, the essential concept
of each should be briefly explained to avoid further ambiguity. Multiple papers in

support of this research are cited in this section for higher thoroughness and authority.

2.1 Program Spectra

The program spectrum represents different perspectives toward a program and focuses
on different features during program executions. [5] The two types of spectra are hit
and count, of which the former only records true or false, and the latter records the
number of times the spectrum is executed. Branch spectra only record the steps
regarding conditional statements, such as “if”, “for”, and “while.” Complete-path
spectra track the complete routes of execution, including conditional branches, loops,
and statements. Different from the complete-path spectra, path spectra only records
partial path based on an acyclic control flow graph, exclusive of any loops. Different
from the normal control flow graph, the acyclic eliminates the back edges that form
loops, becoming loop-free. Data-dependence spectra record definition-use pairs, each
of which has the form (d, u, v), respectively meaning the definition statement of a
variable, statements using the variable, and variable name. Output spectra save the
output of the execution. Similar to complete-path spectra, execution-trace spectra
record the entire route; yet, the main difference between them is that execution trace
includes real codes, whereas complete-path spectra only contain line numbers [6].
Block spectra form program blocks that compound statements [7]. For example,
statements under if or else are included in the same block because they are always run
together under an execution. Table 1 illustrates the spectra, including its profiled code
lines, execution records based on hit and count, for example the program Number of n

Digits in Figure 2.

int n;
cin >> n;
int count = 0, output = 0;
while(count == n) {
int num;

cin >> num;
output = output * 10 + num;

count+;

(- OO

O 00 o0 01NN

¥

cout << output << endl;

-0

[y
(=]

Figure 2: Example code Number of n Digits and its control flow graph



Spectrum Profiled Entities Executions (Hit / Count)
Execution 1 Execution 2
(Input: 0) (Input: 25 7)

Branch 2, 3) T/ 1 T/ 1
(4,5) F/ 0 T/2
4,9 T/1 T/1

Complete- (1,2,3,4,9,10) T/ NA F/NA

Path (1,2,3,4,(5,6,7,8,4)2%9,10) F/NA T/ NA
Path (1,2,3,4),(9, 10) T/1 T/1
(1,2,3,4,9,10) T/1 F/0
(1,2,3,4,5,6,7,8,9,10), (5,6,7, 8) F/0 T/1
Data- (1, (2, 4), n), (3, 10, output) T/ 1 T/ 1
Dependence (3, (7, 10), output) F/ 0 T/ 1
(5, (6, 7), num) F/0 T/2
Output output = 0 T/ 1 F/ 0
output = 57 F/0 T/ 1
Execution (int n, cin > n, int count = 0, output = T/ 1 T/ 1

Trace 0, while (count !=n), }, cout « output
« endl)

(int num, cin >> num) F/0 T/ 1
Block (1,2,3,4) T/1 T/1
(5,6,7,8) F/0 T/2
(9,10) T/1 T/1

Table 1: Spectra for Number of n Digits of Figure 2

2.2  Spectrum-Based Fault Localization

Spectrum-based fault localization, or SBFL, evaluates the suspiciousness of every
program block. This technique measures the frequency each program block is executed
during failed executions, and this number of frequencies is seen as the suspiciousness
value of this program block. There have been different program spectra proposed for
this technique, and the most commonly used is block-hit, due to the high availability of
its result and the low cost of collecting them. [8] In a process of spectrum-based fault
localization, provided test cases are used for the execution of the source code program.
During every execution, program blocks are marked with dots if they are executed, as
shown in Figure 3. This forms the coverage matrix, which has a row number equal to
the number of test cases, and a column number equal to the number of program blocks,
as shown in Figure 4. After the execution, the system will get a list of outcomes, each
representing the success or failure of execution, known as the error vector. In Figure 3,

the error vector is in the last row labeled “Execution results.” [5]

The process can be shown in another form with only matrices, presented in Figure 4.
M spectra indicate the number of runs of the program, and N stands for the number of
code blocks. The M runs generate M results, each recorded either with 0 for successful

(no errors) or 1 for failed (with errors), recorded in the error vector [7].



D Program block T T2 Ts Ty Ncr Nes Ns Np Suspiciousness Ranking

by int count n; o . ¢ . 1 3 3 1 0.5 2
Ele *proc;
List *src_queue, *dest_queue;
if (prio > = MAXPRIO) { /*MAXPRIO=3*/
b return; . 0 1 3 1 0 3
}
by src_queue = prio_queue([prio]; 2 . U 1 2 3 1 0.6 1
dest_queue = prio_queue[prio + 1];
count = src_queue- > mem_count;
if (count > 1) {
/* BUG: It should be if (count > =1) */
by n= (int) (count*ratio + 1); . . 0 2 3 1 0 3
proc = find_nth(src_queue,n);
if (proc) {
bs src_queue = del_ele(src_queue,proc); . . 0 2 3 1 0 3
proc- > priority = prio;
dest_queue = append_ele(dest_queue,proc);
}
}
Execution results S S S F

Figure 3: An example of spectrum-based fault localization [5]
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Figure 4: The Coverage Matrix and Error Vector [7]

The purpose of calculating the suspiciousness value of every code block is to find to
what extent a block reflects the error vector in the M runs. The more closely they
resemble, the more probable of the block being the bug. This deduction is based on the
fact that if the block is involved in executions that turn out to be the failed ones, it may
be the factor that leads to the program’s failure, thus being where the bug locates [9].
Measures for the similarity between the vector of x; ; to x) ; and the error vector are
called similarity coefficients. There are four kinds of similarity coefficients, each
calculated through a different formula, namely Jaccard, Tarantula, AMPLE, and Ochiai
[10].

a
Jaccard: s5; = —————
aq1+ap1taqo
_a11
. _ a11+do1
Tarantula: sy = —a7 a5 —

aii1tap1 aiotapo

AMPLE: 5, = |—2— — 210

aijitdor  A1p+apo




a1
J(@ai1+ag)x(ai1+ao)

Ochiai: s, =

Qoo = |{l|xU =0 Nep = 0}|
,the number of successful runs in which block j is not involved.
Qoo = |{l|xU =0 /\ei = 1}|
,the number of failed runs in which block j is not involved.
A9 = |{l|XU =1 Ne; = 0}'
,the number of successful runs in which block j is involved.
a1 = |{ilx;j =1re; =1}
\ ,the number of failed runs in which block j is involved.

2.3 TF-IDF

TF-IDF, which stands for “term frequency- inverse document frequency,” evaluates the
importance of a word in a document based on its occurring frequency in a document
and the corpus. As seen in the mathematical definition below, it is the product of term

frequency and inverse document frequency [11].
tfidf(t,d,D) = tf(t,d)-idf(t,D)
t = term,d = document,D = set of document

Term frequency represents the frequency of a word in a document. Mathematically, it
is the number of a word’s occurrence in the document over the word count of the
document [11].

tf(t, d) — fta (frequency of tin d)

Ytredfta (total number of words in d)

Inverse document frequency indicates the universality of a word in the corpus.
Mathematically, it is calculated by dividing the total number of documents in the corpus
by the number of documents with the term ¢ included. The lower this number is, the

more common ¢ is, and vice versa [11].

|D| (total number of documents in the corpus)
& |{d € D: t € d}| (documents in the corpus that include termt)

idf(t,D) =lo

10



2.4  Cosine Similarity

Cosine Similarity is an approach that calculates the similarity of two documents. The
documents are presented in the form of vectors, with each value representing the term
frequency of a word. Then, the cosine formula of vectors is applied to the measurement
of the distance between two vectors [12].
a-b
sim(a,b) = ————
llallllbll
In the formula, the similarity is calculated by dividing the product of vectors a and b
by the product of the two vectors’ lengths. The length of a vector is measured using the
Euclidean norm. It is defined as the square root of the sum of the square of every vector

component [13].

Avector V of i components, ||V|| = \/Vlz + V2 4+ V% e+ V2

2.5 Information Retrieval- Based Fault Localization

Information Retrieval- Based Fault Localization, or IRFL, aims to find out a ranked list
of program elements based on their probability to be bugs. Throughout the process, it
uses bug reports, documents that contains specific information about the failure of a
program, to generate textual similarities with each program element, such as “for,” “if,”
“while,” and rank them using these relevance scores. The technique that most system
uses to calculate relevance scores is a combination of TF-IDF and cosine similarity. In
the TF-IDF section, the compared documents (bug report and program element files)
are changed into a vector of numbers, each representing the importance of every word.
Then, the cosine similarity formula will be applied to calculate the distance (in this case

the similarity) between vectors.

11



Two major relevance functions carry out document comparisons, respectively direct
and indirect relevance functions. In the direct relevance function, the relevance score
between current bug report and each program element file is calculated, creating an
initial ranking of program element files. In the indirect relevance function, the current
bug report is first compared with every history bug report related to the current case,
with their relevance score is calculated. Then, the system finds the program elements
fixed in every history bug report, and multiply the relevance score between the history
bug report and fixed elements to the previous relevance scores. This final score turns
out to be the indirect relevance score between the current bug report and those fixed

elements [14].

<[> P

Code A% IR-Based

! : —
i BugLocalization } |
: : Direct Relevancy I@

_,}@

Indirect Relevancy Ranked List of
Program Files

Query:
BugReport

J

| .
History

<> Bug Reports

History
Bug Reports

<f>

Fixed Program Files Per Bug Report
Figure 5: The process of direct and indirect relevance functions in IRFL [10]

Combining the results of the two relevance functions, the system will generate an
ultimate program element ranking that indicates their ranked suspiciousness to be bugs,

as shown in Figure 5.
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3. Methodology

This research mainly focuses on the debugging of the C++ programming language, and

uses C++ as the language for the implementation of the automated debugging system.

3.1 Facilities

Hardware:

1. Laptop (CPU: 2 GHz Quad-Core Intel Core i5 with Intel Iris Plus Graphics,
Memory: 16 GB, SSD: 512GB)
2. Notebook

Developing environment: Visual Studio Code

Programming language: C, C++

3.2 Program spectrum analysis

In this section, the system aims to generate a suspiciousness sequence that indicates the
suspiciousness of code blocks to contain bugs. The most important components in the
measurement of suspiciousness values are the execution paths, which constitute the
coverage matrices, and the execution result, which constitutes the error vectors. The
process can be divided into three main steps: Modifying the source code file to make it
fit the following operations, executing the source code file, and analyzing the data

collected in the previous executions.

Since the initial source code files don’t have the functions of collecting execution path
and result, a new file is created by the system, including the initial codes along with

additional mechanisms, as shown in Figure 6.

13



std; fstream r ("route.txt", fstream:: fstream::

1;

Figure 6: Contrast between an input source code file (left) and its modified source
code file (right)

__LINE _is added to the end of every available line. It is a preprocessor macro that
provides the line number of the current statement [15]. The variable bracket is
declared to record the level of curly braces the current statement is wrapped in. A line
is available to add __LINE__ when bracket > 0, or the current statement is wrapped in
at least one curly braces pair, and when the statement is not ended with a closing curly
brace. During every execution, the value of _ LINE__is recorded in route.txt, which

will contain a complete execution path when the execution finishes.

In the program, the modified source code file is executed when pairs of input and
expected output files are provided. To compile and execute with the code file, the
function system() is needed. It invokes the command-line interface to execute
commands given as the function’s parameters [16]. After every execution, the output
file is checked by comparing with the expected output file provided by the users, after
which the result is generated (Figure 7).
LocalJudge: :ExecuteCodeFile(std::string inputFileName, std::string answerFileName) {
std::string "'g++ Mod_ " + ;
onst chars str();
);
("output.txt", std::fstream:: )

inputFileName + " >output.txt";
str();

, std::fstream:: std::fstream::

14



Figure 7: Compilation and Execution of source codes with input and output files

When all executions end, the system generates a set of route file R and an error log, E,
which indicates whether an execution fails. Using these data, the system calculates the
numbers of successful and failed execution that each line of code is involved, as well
as the total number of successful and failed executions. An optimized Tarantula
Formula is used as the program spectrum formula to identify every line of code’s

suspiciousness value:

NiF1 Nis,1 _ Nir1

Sus; = max Niro t Nir1 1 NisotMNis1 MNiro T Nir1
NiF1 Nis1 "u+1 Nir1 Nis1

Nipo+tNir1  MNiso T Nis1 NirotNir1 Niso T Nis1

ni gy = |(IR;3iE; = 1}
Niro = |{I'|Rj£i' Ej = 1}|
n;s, = |{j|R;3i, E; = 0}
n;s0 = |(j|R;Ai, E; = 0}]

Whereu equals the number of times the latter parameter of max function is the
maximum. Besides the original Tarantula formula, a new formula calculating the
probability of another circumstance is generated and compared with the original one. It
considers the possibility that bugs come from “not passing correct code blocks,” which
differs from the original formula examining bugs from executions “passing certain

buggy code blocks.”

However, it is risky to consider all code blocks as code blocks that should be passed in

order to get successful outcomes, since there are code blocks opening to restricted
conditions, and designed not to pass in these failed test cases. Thus, —is applied as a
coefficient to rationalize the probabilities.

After the suspiciousness value calculations of every line, adjacent lines with same
suspiciousness values are combined into block of codes codeBlocks[i] and sorted so
that their suspiciousness values, codeBlocks|i]. sus, are arranged in descending order,

becoming a ranked list of code blocks.

3.3 Information Retrieval

The goal of applying information retrieval is to utilize previous debugging experiences

to help optimize the accuracy of the current suspiciousness value of each code block.

15



During the process, the historical file database provides information that contributes to

the optimizations.

The database contains folders indicating highly relevant sets of historical debugging
analysis. In every historical debugging analysis, all information about the code blocks
of the historical source code file is recorded, including every code block’s starting,

ending line, suspiciousness value, and description.

Throughout this section, TF-IDF vectorization function is used to help evaluate the
relevance among documents and suspiciousness sequences. The input text are first
preprocessed through a series of text preprocessing methods. Non-alphabetical and non-
numerical characters are removed, all characters are converted to lowercase, and all
words in the text are tokenized into string vector vocabList. Finally, the tokens are
stemmed, or to remove their inflections to simpler forms of words, using

OleanderStemmingLibrary [17].

Two maps records respectively the token’s term frequency (TF) and inverse term
frequency (IDF). The former counts the occurrences of every term in vocabList and
divides them by the total number of tokens in the text. The latter uses Code Description
Corpus (Figure 8) to measure the document frequency. The corpus is read and outputted
as token list allVocabList[i] referencing document i in the corpus. During calculation
of every term’s inverse document frequency, the system iterates over allVocabList][i]

and identify whether the document contains the term through binary_search.

Code Description Corpus X
GENERAL INFO COUNTS @ LEXICON SIZES @ TEXT TYPES @
Language English Tokens. 954397 word” 24,158
<doc> (8] 1403~
Tagset Words 798,504 tag 63 i@
Word skatch grammer Sentences 55964 lempos 19,248 03 B
Term grammar Paragraphs 34156 pos 10 39 B3
Documents 1403 lemma 17212 Ta
lempos_lc 18017 e
L - |
lemma_lc 15872 i@
e 20,587 B
«g> (D) 142,285
<g>(0) 55,964
COMMON TAGS LEMPOS SUFFIXES @

<p> (0} 34,156

adjective e adjective i <> (0) u

adverb RB2 adverb a
canjunction o conjunction < <String= (0)
determiner oT noun <int> (0)

noun N preposition 4 <dataType= (1)

nnnnn I e pronoun 4 <l

particle RP verb “ <F» (0}

9
s
s
4
N
a
preposition N <Tp= (0) 4
pronoun Pp2 < (0) 3
verb v <double= (0} 3

<_Alloe> (0) 2

<iostream> (0) 2

<Args> (0) 2
2

<edit> (1)

Figure 8: Code Description Corpus
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Firstly, the system vectorizes the general description of the current source code
provided by the users into TF-IDF vector, calculate the relevance score between the
vector and all folders’ description vectors using cosine similarity formula, and find the
most relevant folder among the database, which is the primary reference for information

retrieval in the following processes.

The system uses cosine similarity to measure the relevance between current source code
file and historical debugging analysis to determine to what extent the analysis can affect
the current suspiciousness ranking. The relevance score is a multiplication of three sub-
relevance scores, namely fileRelevanceScore , bugRelevanceScore, and code

block suspiciousness relevance, chMatchSus|[i] of the ith code block.

Based on the provided code block descriptions of the current and historical source code
file, the system pairs codeBlocks[i] with the most relevant code block of the historical
file. cbMatch[i], where i is the code block’s index of the current source code file,
indicates the index of codeBlocks[i]’s corresponding code block of the historical
source code file. For every codeBlocks[i], the system calculates the cosine similarity
between code block description codeBlocksDesc[i] and cmpCodeBlocksDesc|i],
and finds the historical code block, cmpCodeBlocks[cbMatch[i]], whose description

has the maximum cosine similarity with codeBlocksDesc]i].

With the matches of code blocks, the system vectorizes the string form of combination
of all code block descriptions codeBlocksDescStr and the corresponding historical
code block descriptions cmpCodeBlocksDescStr, and generate the relevance score

fileRelevanceScore using cosine similarity.

While fileRelevanceScore represents the similarity of content between the current
and historical source code file, bugRelevanceScore indicates the consistency of bug
conditions between the two files. It is the cosine similarity between the ranked
suspiciousness sequence and the corresponding suspiciousness sequence of the

historical source code file.

Besides fileRelevanceScore and bugRelevanceScore,codeBlockBugRelevance-
Score indicates the consistency of bug conditions between the pair of code blocks. It

is calculated through restricted growth formula:

chMatchSus[i] = e kAsus

17



Where Asus is the difference of suspiciousness value between the pair of code blocks.
Logically, a difference of 0.5 in suspiciousness value indicates a 50% suspiciousness
relevance of the two code blocks since the case is placed under an ambiguous
circumstance where the possibility of being completely irrelevant equals that of being
completely relevant. Therefore, by substituting Asus with 0.5 and chbMatchSus|i]

In 0.5

with 50%, —k = 0%

~ —1.38629436112. Therefore, the formula presented is:

chMatchSus|i] = o (—1.38629436112) Asus

Multiplying the three relevance scores gets the final relevance score for updating the

current suspiciousness ranking.

After retrieving the historical file’s result, buggyCodeBlocks|i] records the index of
the finally fixed buggy code blocks in the historical file. The system refers back to the
corresponding code block of the current source code file using chMatch, and adds the
relevance score to updateWeight, which measures the final weight of updating the
suspiciousness sequence:

Y. i(relevance scores;; .L.)2
updateWeightl[i] = ! T2

Y.jrelevance scores;,

Where file;; is the file that has one of its fixed buggy code blocks index equal to
cbMatchli]. The final suspiciousness value finalSus[i] is updated according to

updateWeight[i]:
finalSus[i] = codeBlocks[i].sus + (1 — codeBlocks[i].sus) X updateWeight]|i]

After the process, the code block information of current source code files is written to

a new debugging analysis and submitted to the database.
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4. Result and Discussion

In order to test the system’s accuracy of correctly indicating bugs in the source codes,
multiple pairs of buggy and fixed source code files written in c++ are used to examine
the consistency of the output suspiciousness rankings and the buggy lines fixed in the

correct source code file.

4.1 Data and Preprocessing

In order to exhibit the validity of information retrieval section, the testing focuses on
one coding problem Wanna Go Back Home from AtCoder Grant Contest 003 [18].
Throughout the testing, 15 pairs of buggy and fixed source code files are randomly
chosen from the submission page of the problem (Figure 9). Each pair of buggy and
correct source code files are written by the same user in AtCoder. The buggy source
codes are be labeled “WA (Wrong Answer)” in the online judge, and the correct one
with “AC (Accepted)” (Figure 9).

2021-11-02 19:26:53  A-Wanna go back home luogu_bot1 Q, C++(GCC 9.2.1) 200 352 Byte [ AC | 6ms 3628KB  Detai

=3

2021-11-02 19:24:47  A-Wanna go back home luogu_bot1Q C++(GCC 9.2.1) 0 320 Byte 9ms 3532KB = Detai

Figure 9: One of the pairs of buggy and correct source code files for Wanna Go Back

Home

216A_Bug.cpp ? ... 216A.cpp

<iostream> £ir ide <iostream>
or> ctor>
<algorithm> gorithm>

<stdio.h>
<cmath>

1€
1d
ide
I0E
id
1€
i

<iomanip>

<map>

<utility>

e <string>

e std;
. Lts
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Figure 10: Example Buggy Source Code File (Left) and Correct Source Code File
(Right) of the source code files pair from AtCoder Beginner Contest 216 Task A —

Signed Difficulty

For every pair of buggy and fixed source code files, source code and code block

descriptions are generated. Source code descriptions are the paraphrased form of the

problem statement and unique from other source code descriptions, while code block

descriptions are the translation of code blocks into plain words, as close to the codes as

possible.

Complete input and output test case folders are downloaded from its official folder

atcoder testcases on Dropbox [19]. All of the test cases are involved in the execution

of the buggy source code files.

Preprocessing:

4.2

1.

2.

Removal of Comments

In order to condense the code length and unnecessary runtime, additional

comments are removed.
Addition of curly braces for single-line loop or conditional statements

Since the line “route < to_String(_ LINE ) «< *“”;” is added to the end of a
line, single-line loop or conditional statements disable the mechanism to detect
whether the statements within are passed. Besides, if there are the additional
line is added after an if that is followed by an else if or else, the syntax will be
incorrect and lead to compile errors. Therefore, curly braces are added to the

end of the statements to make the content wrapped in curly braces.

Result

Among the 15 pairs of buggy and correct source code files, 29 code blocks
turned out to be fixed, each receiving a final suspiciousness value and rank, as
shown in Figure 11 and Table 2. Through the distribution and mean of the
suspiciousness value and rank, it can be concluded that the system has identified
and highlighted most of the fixed buggy code blocks, but the suspicious value
is mostly concentrated around 40% to 60%, which is not obvious enough to

indicate the high suspicion of the fixed code blocks.
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90% - 100%
80% - 89%
70% - 79%
60% - 69%
50% - 59%
40% - 49%
30% - 39%

Suspiciousness Value

20% - 29%
10% - 19%
0% - 9%

4 6

8 10 12

Number of Fixed Code Blocks

Figure 11: Statistics of the suspiciousness value of fixed code blocks

Average suspiciousness
probability of the fixed
code blocks

Average ranking of the fixed
code blocks

Absolute Accuracy
(Fixed code blocks
ranked No. 1)

58.58% + 15.29%

No. 3.19 + 2.11 /10.93

46.66%

Table 2: Mean (+ Standard Deviation) of the suspiciousness value, rank, and absolute

4.3 Discussion

accuracy of the fixed code blocks

After testing with the source code files, multiple conclusions are drawn from the

statistical results.

Problems:

1. Weakened effectiveness under all-WA situations

Based on the program spectrum formula :

21




4.

- - — X . -
MiF1 , MS1 Ty MiF1 nis1
niFotniF1  MiS011S1 niFotniF1 "i,S0171S1

niF1 nis1 niF1
nigotni 1 njgotni ni +n;
iL,F, 0T ,F,1 i,5,07",S,1 iL,F, 0" "M,F,1
max 5

when there are only failed cases, n;5o and n;g;, both equals 0, leading the

suspiciousness value to be definitely 1, making the result inaccurate.
High Time Complexity

The time complexity of this system is O(n; X N2 X Nperm X Ngoc X 108 Neoken)
where n; is the number of historical files in the most relevant folder, n, is the
number of code blocks in a source code file, Ny, 1s the number of terms in an
input text file, n;,. is the number of document in the corpus, and ngyke, is the
number of tokens in each document of the corpus. This system becomes time-

consuming when n, is large.
Inaccurate Code block Matchings

Occasionally, code blocks of the current source code file are matched with

irrelevant historical code blocks, making the result inaccurate.
Noise Problem

Due to the fact that the system uses relevance scores as weight for updating weights,
files and code blocks with little relevance still affect the final suspiciousness ranking,

making it less accurate.

Solution:

To solve the problem occurred under all-WA conditions, I change the design of the
program spectrum formula to make the suspiciousness value be 0.5 under the

nis1 NiF1

condition that equals 0 and doesn’t. The database then

niso0tNnis NirotNir1

optimizes the suspiciousness sequence according to the retrieval of the historical
debugging analysis. An example is shown in Figure 12, which where initially the
suspiciousness values of all the potentially buggy code blocks are 100%, yet
through the optimization mentioned above, the more reasonable result of the
program spectrum section provides spaces for the information retrieval section to

update the values according to relevant historical files.
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Qe R e Suspiciousness | Suspiciousness | Fixed
g Value (Before) Ranking Code
(After) Blocks
Line 19 ~ 22 100.00% 63.03% v
Line 6 ~ 16 100.00 % 58.97%
Line 24 ~ 24 100.00% 51.55%

Figure 12: Comparison of the suspiciousness value before and after the

optimization is implemented

Solution Proposal:

1.

After calculations of the IDF value of terms, the system can save the results

onto the database, and directly use them when there are identical input terms

afterwards. This approach is especially helpful for common terms.

To solve the inaccuracy of code blocks matching and noise problem, changing

the code block matching algorithm from textual similarity to control flow graph

comparison is more accurate regarding the similarity of the functions of the code

block pairs.

Broaden the number of historical files and folders to provide ample and more

likely useful references. Once the system can retrieve sufficient relevant files,

the irrelevant ones will have little impact on the formation of the final

suspiciousness rankings.
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5. Conclusion

51 Summary of Findings

By implementing program spectrum analysis and information retrieval in the system, it
is demonstrated that the result is stable and moderately accurate, but they are still
ambiguous. To improve the system’s accuracy and efficiency on localizing bugs,
calculations should be saved and used when next similar request is made. Also, code
block matching algorithm can be changed to control flow graph comparison to keep the
matchings consistent with the relevance of code blocks’ content, while database should

be constantly expanding to handle wider range of source code files.

5.2 Future Prospects and Applications

Currently, this system only support single-file code project written in c++. In the future,
I expected to expand the programming language support in the future and let more users

to access the system.

The system can also be integrated into code editors and IDE (Integrated Development
Environment) and combined with debuggers. By utilizing the large quantities of source
codes developed on the platforms, the system can expand the database and implement
higher quality of fault localization on the input source codes. By saving the developers’
development time lengths, this system can ultimately increase the productions of

software programs and even fasten technological growth.
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