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Abstract 

在程式專案開發中，偵測錯誤常為最耗時的環節，進而影響整個專案的開發時

長。而現今雖有些許輔助開發者提升偵錯效能的工具，但這些工具也只能藉由

提供編譯執行中的資訊讓開發者省去偵錯時的繁瑣步驟，仍須開發者自行評估

每段程式碼的正確性。此研究透過程式段落分析與資訊檢索實現自動錯誤定位，

在每個程式段落標記其成為臭蟲（bug）的可能性。在程式段落分析中，執行使

用者之原始碼，並透過歸納最終結果為正確及錯誤之執行路徑差異分析出每個

程式段落的可疑性。接著運用資訊檢索技術於資料庫中找尋相似之原始碼，並

參考其偵錯結果優化現有之可疑性，形成最終之可疑性排名。此研究不只結合

了上述兩種技術，更優化可疑程度之計算方法以及資訊檢索中的相似度比對機

制，達到更完善的錯誤定位。（此指「臭蟲」非語法錯誤（Syntax Errors），而

為邏輯錯誤（Logic Errors）。） 

Debugging is often the most time-consuming phase during program development, 
lengthening the development time and lowering efficiency. Even though there are 
currently existing tools that help raise debugging efficiency, their functions are largely 
limited, as they only present a more comprehensive analysis behind the compiling and 
running processes in order to save complicated steps in debugging; however,  
developers are still required to evaluate the reasonability and suspiciousness of every 
line of code. Unlike the current manual debuggers, this research aims to build a system 
that automatically detects bugs* in the programs through program spectrum analysis 
and information retrieval. In the section of program spectrum analysis, the system will 
statistically analyze the suspiciousness of every code block in the input source code file 
according to the provided test cases, later formulating an initial suspiciousness ranking 
based on previous calculations. Afterward, the system retrieves historical files that 
resemble the current source code and uses their suspiciousness rankings to modify the 
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initial suspiciousness ranking, generating the final suspiciousness ranking as the 
system’s output. This research integrates the two techniques and optimizes the formula 
of suspiciousness in program spectrum analysis and the comparison mechanisms in 
information retrieval, reaching performances of higher comprehensiveness and 
preciseness.  

*The word “bugs” here refers to logic errors that cause wrong answers or runtime errors, 
not syntax errors that lead to compile errors.) 

 

1. Introduction 

1.1 Background 

In recent years, computer science and programming have become popular fields due to 
their infinite potential for innovations as well as their significant contributions to the 
globe. However, while developing projects ranging from single-file codes to cross-
platform software, most programmers are struggling to debug – a process to find the 
errors that occurred in the codes and resolve them – and it turns out to increase 
inefficiency and time consumption during the process.  

Computer programming can be divided into four phases: identifying problems, finding 
solutions, coding them, and debugging [1]. Relative to the first three phases, debugging 
often makes the least number of changes, yet it usually requires the longest time length. 
According to the CVP survey (figure 1), debugging has cost 50% (312 billion US 
Dollars) of the global software developer wages, equivalent to the wages for designing 
and building programs [2]. 



 3 

 

 

Figure 1: Impact of debugging on time spent developing code and its cost in terms of 
wages per annum. 

Currently, multiple tools are able to assist developers to find bugs, such as debuggers 
and reversible debugging software. By setting breakpoints and limitations in the 
debugger mode, users can stop at lines that they think are suspicious, track the execution 
routes, and monitor the changes of variables and memory allocations line by line [3]. 
On the other hand, reversible debugging software records all the memory access, 
computations, modifications to variables, as well as calls to the operating systems. By 
moving forward and backward among lines, the users can inspect the reasonability of 
the current program states and identify the errors in the codes [4]. 

1.2 Motivation 

Although there are currently techniques that help developers to detect bugs more 
effectively, they still require developers to evaluate the validity of each program state 
and determine the final location. Fundamentally, they can’t solve the problem of 
manual evaluations and high time consumption. 

1.3 Purpose 

This research aims to develop an automated debugging system that analyzes the most 
possible location of the bugs using test cases given by the users along with previously 
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fixed source code files that are comparable to current ones. The following are three 
primary objectives of this research: 

1) Develop algorithms that automatically localize potential bugs 

2) Reduce or eliminate the time that the developers spend on debugging 

3) Save the effort of the developers on assessing and locating bugs 

 

 

 

 

 

 

 

 

 

 

1.4 System Architecture  
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In the program spectrum analysis section, the buggy source code file is first inputted 
and processed. A new file is created by integrating the original codes and a line-tracing 
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mechanism. Next, it is compiled and executed with input and output files provided by 
the users, and the system generates a coverage matrix consisting of m block-hit spectra, 
each recording whether the code blocks are traversed in the execution or not. The error 
log records the result of every execution. By comparing the similarity between the 
coverage matrix of each code block and error log, the system measures the 
suspiciousness values, or the probability to contain bugs, of the code block – the higher 
they resemble, the more possible that the code block is the reason that leads to failures 
and contains bugs. Finally, an initial ranked list of code blocks is generated. 

In the information retrieval section, the input source code is vectorized into a term 
vector through the process of TF-IDF. It is then compared with the TF-IDF vector of 
every dataset, a collection consisting of similar source code files, in the historical file 
database. Of all datasets, one dataset with the highest relevance score is chosen. In the 
dataset, all historical source code files are vectorized into term vectors through TF-IDF 
and compared with the term vectors of the input source code file. The fixed buggy code 
blocks list regarding each historical source code file then alters the initial ranked list of 
code blocks to the extent based on the relevance score between the historical and input 
source code files. Finally, a final ranked list of code blocks is generated and outputted, 
indicating the suspiciousness values of each code block. 

 

 

 

 

 

 

 

 

 

 

 

2. Related Works 
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Since this research is based on a variety of algorithms and theories, the essential concept 
of each should be briefly explained to avoid further ambiguity. Multiple papers in 
support of this research are cited in this section for higher thoroughness and authority. 

2.1 Program Spectra 

The program spectrum represents different perspectives toward a program and focuses 
on different features during program executions. [5] The two types of spectra are hit 
and count, of which the former only records true or false, and the latter records the 
number of times the spectrum is executed. Branch spectra only record the steps 
regarding conditional statements, such as “if”, “for”, and “while.” Complete-path 
spectra track the complete routes of execution, including conditional branches, loops, 
and statements. Different from the complete-path spectra, path spectra only records 
partial path based on an acyclic control flow graph, exclusive of any loops. Different 
from the normal control flow graph, the acyclic eliminates the back edges that form 
loops, becoming loop-free. Data-dependence spectra record definition-use pairs, each 
of which has the form (d, u, v), respectively meaning the definition statement of a 
variable, statements using the variable, and variable name. Output spectra save the 
output of the execution. Similar to complete-path spectra, execution-trace spectra 
record the entire route; yet, the main difference between them is that execution trace 
includes real codes, whereas complete-path spectra only contain line numbers [6]. 
Block spectra form program blocks that compound statements [7]. For example, 
statements under if or else are included in the same block because they are always run 
together under an execution. Table 1 illustrates the spectra, including its profiled code 
lines, execution records based on hit and count, for example the program Number of n 
Digits in Figure 2. 

 

 

 

 

 

 

Figure 2: Example code Number of n Digits and its control flow graph 
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Table 1: Spectra for Number of n Digits of Figure 2 

2.2 Spectrum-Based Fault Localization 

Spectrum-based fault localization, or SBFL, evaluates the suspiciousness of every 
program block. This technique measures the frequency each program block is executed 
during failed executions, and this number of frequencies is seen as the suspiciousness 
value of this program block. There have been different program spectra proposed for 
this technique, and the most commonly used is block-hit, due to the high availability of 
its result and the low cost of collecting them. [8] In a process of spectrum-based fault 
localization, provided test cases are used for the execution of the source code program. 
During every execution, program blocks are marked with dots if they are executed, as 
shown in Figure 3. This forms the coverage matrix, which has a row number equal to 
the number of test cases, and a column number equal to the number of program blocks, 
as shown in Figure 4. After the execution, the system will get a list of outcomes, each 
representing the success or failure of execution, known as the error vector. In Figure 3, 
the error vector is in the last row labeled “Execution results.” [5]  

The process can be shown in another form with only matrices, presented in Figure 4. 
M spectra indicate the number of runs of the program, and N stands for the number of 
code blocks. The M runs generate M results, each recorded either with 0 for successful 
(no errors) or 1 for failed (with errors), recorded in the error vector [7]. 
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Figure 3: An example of spectrum-based fault localization [5] 

Figure 4: The Coverage Matrix and Error Vector [7] 

The purpose of calculating the suspiciousness value of every code block is to find to 
what extent a block reflects the error vector in the M runs. The more closely they 
resemble, the more probable of the block being the bug. This deduction is based on the 
fact that if the block is involved in executions that turn out to be the failed ones, it may 
be the factor that leads to the program’s failure, thus being where the bug locates [9]. 
Measures for the similarity between the vector of 𝑥1,𝑗 to 𝑥𝑀,𝑗 and the error vector are 

called similarity coefficients. There are four kinds of similarity coefficients, each 
calculated through a different formula, namely Jaccard, Tarantula, AMPLE, and Ochiai 
[10]. 

Jaccard: 𝑠𝑗 = 
𝑎11

𝑎11+𝑎01+𝑎10
 

Tarantula: 𝑠𝑡 = 
𝑎11

𝑎11+𝑎01
𝑎11

𝑎11+𝑎01
+

𝑎10
𝑎10+𝑎00

 

AMPLE: 𝑠𝑎 = |
𝑎11

𝑎11+𝑎01
−

𝑎10

𝑎10+𝑎00
| 
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Ochiai: 𝑠𝑜 = 
𝑎11

√(𝑎11+𝑎01)×(𝑎11+𝑎10)
 

{
 
 
 
 

 
 
 
 

𝑎00 = |{𝑖|𝑥𝑖𝑗 = 0 ∧ 𝑒𝑖 = 0}|

, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑.

𝑎00 = |{𝑖|𝑥𝑖𝑗 = 0 ∧ 𝑒𝑖 = 1}|

, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑.

𝑎10 = |{𝑖|𝑥𝑖𝑗 = 1 ∧ 𝑒𝑖 = 0}|

, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 𝑗 𝑖𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑.

𝑎11 = |{𝑖|𝑥𝑖𝑗 = 1 ∧ 𝑒𝑖 = 1}|

, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 𝑗 𝑖𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑.

 

 

2.3 TF-IDF 

TF-IDF, which stands for “term frequency- inverse document frequency,” evaluates the 
importance of a word in a document based on its occurring frequency in a document 
and the corpus. As seen in the mathematical definition below, it is the product of term 
frequency and inverse document frequency [11]. 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) =  𝑡𝑓(𝑡, 𝑑) ∙ 𝑖𝑑𝑓(𝑡, 𝐷) 

𝑡 = 𝑡𝑒𝑟𝑚, 𝑑 = 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝐷 = 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 

Term frequency represents the frequency of a word in a document. Mathematically, it 
is the number of a word’s occurrence in the document over the word count of the 
document [11]. 

𝑡𝑓(𝑡, 𝑑) =
𝑓𝑡,𝑑 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑖𝑛 𝑑)

∑𝑡′∈𝑑𝑓𝑡,𝑑 (𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑)
 

Inverse document frequency indicates the universality of a word in the corpus. 
Mathematically, it is calculated by dividing the total number of documents in the corpus 
by the number of documents with the term t included. The lower this number is, the 
more common t is, and vice versa [11]. 

𝑖𝑑𝑓(𝑡, 𝐷) = log
|𝐷| (𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠)

|{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}| (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑡𝑒𝑟𝑚 𝑡)
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2.4 Cosine Similarity 

Cosine Similarity is an approach that calculates the similarity of two documents. The 
documents are presented in the form of vectors, with each value representing the term 
frequency of a word. Then, the cosine formula of vectors is applied to the measurement 
of the distance between two vectors [12]. 

𝑠𝑖𝑚(𝑎, 𝑏) =
𝑎 ∙ 𝑏

‖𝑎‖‖𝑏‖
 

In the formula, the similarity is calculated by dividing the product of vectors a and b 
by the product of the two vectors’ lengths. The length of a vector is measured using the 
Euclidean norm. It is defined as the square root of the sum of the square of every vector 
component [13]. 

𝐴 𝑣𝑒𝑐𝑡𝑜𝑟 𝑉⃗  𝑜𝑓 𝑖 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, ‖𝑉‖ = √𝑉1
2 + 𝑉2

2 + 𝑉3
2 +⋯+ 𝑉𝑖

2 

 

2.5 Information Retrieval- Based Fault Localization 

Information Retrieval- Based Fault Localization, or IRFL, aims to find out a ranked list 
of program elements based on their probability to be bugs. Throughout the process, it 
uses bug reports, documents that contains specific information about the failure of a 
program, to generate textual similarities with each program element, such as “for,” “if,” 
“while,” and rank them using these relevance scores. The technique that most system 
uses to calculate relevance scores is a combination of TF-IDF and cosine similarity. In 
the TF-IDF section, the compared documents (bug report and program element files) 
are changed into a vector of numbers, each representing the importance of every word. 
Then, the cosine similarity formula will be applied to calculate the distance (in this case 
the similarity) between vectors.  
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Two major relevance functions carry out document comparisons, respectively direct 
and indirect relevance functions. In the direct relevance function, the relevance score 
between current bug report and each program element file is calculated, creating an 
initial ranking of program element files. In the indirect relevance function, the current 
bug report is first compared with every history bug report related to the current case, 
with their relevance score is calculated. Then, the system finds the program elements 
fixed in every history bug report, and multiply the relevance score between the history 
bug report and fixed elements to the previous relevance scores. This final score turns 
out to be the indirect relevance score between the current bug report and those fixed 
elements [14]. 

Figure 5: The process of direct and indirect relevance functions in IRFL [10] 

Combining the results of the two relevance functions, the system will generate an 
ultimate program element ranking that indicates their ranked suspiciousness to be bugs, 
as shown in Figure 5. 
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3. Methodology 

This research mainly focuses on the debugging of the C++ programming language, and 
uses C++ as the language for the implementation of the automated debugging system. 

3.1 Facilities 

Hardware:  

1. Laptop (CPU: 2 GHz Quad-Core Intel Core i5 with Intel Iris Plus Graphics, 
Memory: 16 GB, SSD: 512GB) 

2. Notebook 

Developing environment: Visual Studio Code 

Programming language: C, C++ 

3.2 Program spectrum analysis 

In this section, the system aims to generate a suspiciousness sequence that indicates the 
suspiciousness of code blocks to contain bugs. The most important components in the 
measurement of suspiciousness values are the execution paths, which constitute the 
coverage matrices, and the execution result, which constitutes the error vectors. The 
process can be divided into three main steps: Modifying the source code file to make it 
fit the following operations, executing the source code file, and analyzing the data 
collected in the previous executions. 

Since the initial source code files don’t have the functions of collecting execution path 
and result, a new file is created by the system, including the initial codes along with 
additional mechanisms, as shown in Figure 6.  
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Figure 6: Contrast between an input source code file (left) and its modified source 
code file (right) 

__𝐿𝐼𝑁𝐸__ is added to the end of every available line. It is a preprocessor macro that 
provides the line number of the current statement [15]. The variable 𝑏𝑟𝑎𝑐𝑘𝑒𝑡  is 
declared to record the level of curly braces the current statement is wrapped in. A line 
is available to add __𝐿𝐼𝑁𝐸__ when 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 > 0, or the current statement is wrapped in 
at least one curly braces pair, and when the statement is not ended with a closing curly 
brace. During every execution, the value of __𝐿𝐼𝑁𝐸__ is recorded in route.txt, which 
will contain a complete execution path when the execution finishes. 

In the program, the modified source code file is executed when pairs of input and 
expected output files are provided. To compile and execute with the code file, the 
function 𝑠𝑦𝑠𝑡𝑒𝑚()  is needed. It invokes the command-line interface to execute 
commands given as the function’s parameters [16]. After every execution, the output 
file is checked by comparing with the expected output file provided by the users, after 
which the result is generated (Figure 7). 
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Figure 7: Compilation and Execution of source codes with input and output files 

When all executions end, the system generates a set of route file 𝑅 and an error log, 𝐸, 
which indicates whether an execution fails. Using these data, the system calculates the 
numbers of successful and failed execution that each line of code is involved, as well 
as the total number of successful and failed executions. An optimized Tarantula 
Formula is used as the program spectrum formula to identify every line of code’s 
suspiciousness value: 

𝑆𝑢𝑠𝑖 = 𝑚𝑎𝑥(

𝑛𝑖,𝐹,1
𝑛𝑖,𝐹,0 + 𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,1
𝑛𝑖,𝐹,0 + 𝑛𝑖,𝐹,1

+ 
𝑛𝑖,𝑆,1

𝑛𝑖,𝑆,0 + 𝑛𝑖,𝑆,1

,
1

𝑢 + 1
× 

𝑛𝑖,𝑆,1
𝑛𝑖,𝑆,0 + 𝑛𝑖,𝑆,1

−
𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,0 + 𝑛𝑖,𝐹,1
𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,0 + 𝑛𝑖,𝐹,1
+ 

𝑛𝑖,𝑆,1
𝑛𝑖,𝑆,0 + 𝑛𝑖,𝑆,1

)  

,

{
 
 

 
 
𝑛𝑖,𝐹,1 = |{𝑗|𝑅𝑗∃𝑖, 𝐸𝑗 = 1}|

𝑛𝑖,𝐹,0 = |{𝑗|𝑅𝑗∄𝑖, 𝐸𝑗 = 1}|

𝑛𝑖,𝑆,1 = |{𝑗|𝑅𝑗∃𝑖, 𝐸𝑗 = 0}|

𝑛𝑖,𝑆,0 = |{𝑗|𝑅𝑗∄𝑖, 𝐸𝑗 = 0}|

 

Where𝑢  equals the number of times the latter parameter of 𝑚𝑎𝑥  function is the 
maximum. Besides the original Tarantula formula, a new formula calculating the 
probability of another circumstance is generated and compared with the original one. It 
considers the possibility that bugs come from “not passing correct code blocks,” which 
differs from the original formula examining bugs from executions “passing certain 
buggy code blocks.”  

However, it is risky to consider all code blocks as code blocks that should be passed in 
order to get successful outcomes, since there are code blocks opening to restricted 

conditions, and designed not to pass in these failed test cases. Thus, 1

𝑢+1
 is applied as a 

coefficient to rationalize the probabilities.  

After the suspiciousness value calculations of every line, adjacent lines with same 
suspiciousness values are combined into block of codes 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖] and sorted so 
that their suspiciousness values, 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖]. 𝑠𝑢𝑠, are arranged in descending order, 
becoming a ranked list of code blocks. 

3.3 Information Retrieval 

The goal of applying information retrieval is to utilize previous debugging experiences 
to help optimize the accuracy of the current suspiciousness value of each code block. 
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During the process, the historical file database provides information that contributes to 
the optimizations. 

The database contains folders indicating highly relevant sets of historical debugging 
analysis. In every historical debugging analysis, all information about the code blocks 
of the historical source code file is recorded, including every code block’s starting, 
ending line, suspiciousness value, and description. 

Throughout this section, TF-IDF vectorization function is used to help evaluate the 
relevance among documents and suspiciousness sequences. The input text are first 
preprocessed through a series of text preprocessing methods. Non-alphabetical and non-
numerical characters are removed, all characters are converted to lowercase, and all 
words in the text are tokenized into string vector 𝑣𝑜𝑐𝑎𝑏𝐿𝑖𝑠𝑡. Finally, the tokens are 
stemmed, or to remove their inflections to simpler forms of words, using 
OleanderStemmingLibrary [17]. 

Two maps records respectively the token’s term frequency (TF) and inverse term 
frequency (IDF). The former counts the occurrences of every term in 𝑣𝑜𝑐𝑎𝑏𝐿𝑖𝑠𝑡 and 
divides them by the total number of tokens in the text. The latter uses Code Description 
Corpus (Figure 8) to measure the document frequency. The corpus is read and outputted 
as token list 𝑎𝑙𝑙𝑉𝑜𝑐𝑎𝑏𝐿𝑖𝑠𝑡[𝑖] referencing document 𝑖 in the corpus. During calculation 
of every term’s inverse document frequency, the system iterates over 𝑎𝑙𝑙𝑉𝑜𝑐𝑎𝑏𝐿𝑖𝑠𝑡[𝑖] 
and identify whether the document contains the term through 𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑒𝑎𝑟𝑐ℎ. 

 

Figure 8: Code Description Corpus 
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Firstly, the system vectorizes the general description of the current source code 
provided by the users into TF-IDF vector, calculate the relevance score between the 
vector and all folders’ description vectors using cosine similarity formula, and find the 
most relevant folder among the database, which is the primary reference for information 
retrieval in the following processes.  

The system uses cosine similarity to measure the relevance between current source code 
file and historical debugging analysis to determine to what extent the analysis can affect 
the current suspiciousness ranking. The relevance score is a multiplication of three sub-
relevance scores, namely 𝑓𝑖𝑙𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 , 𝑏𝑢𝑔𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 , and code 
block suspiciousness relevance, 𝑐𝑏𝑀𝑎𝑡𝑐ℎ𝑆𝑢𝑠[𝑖] of the 𝑖th code block. 

Based on the provided code block descriptions of the current and historical source code 
file, the system pairs 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖] with the most relevant code block of the historical 
file. 𝑐𝑏𝑀𝑎𝑡𝑐ℎ[𝑖], where 𝑖 is the code block’s index of the current source code file, 
indicates the index of 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖]’s corresponding code block of the historical 
source code file.  For every 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖], the system calculates the cosine similarity 
between code block description 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠𝐷𝑒𝑠𝑐[𝑖] and  𝑐𝑚𝑝𝐶𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠𝐷𝑒𝑠𝑐[𝑖], 
and finds the historical code block, 𝑐𝑚𝑝𝐶𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑐𝑏𝑀𝑎𝑡𝑐ℎ[𝑖]], whose description 
has the maximum cosine similarity with 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠𝐷𝑒𝑠𝑐[𝑖]. 

With the matches of code blocks, the system vectorizes the string form of combination 
of all code block descriptions 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠𝐷𝑒𝑠𝑐𝑆𝑡𝑟 and the corresponding historical 
code block descriptions 𝑐𝑚𝑝𝐶𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠𝐷𝑒𝑠𝑐𝑆𝑡𝑟, and generate the relevance score 
𝑓𝑖𝑙𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 using cosine similarity. 

While 𝑓𝑖𝑙𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 represents the similarity of content between the current 
and historical source code file, 𝑏𝑢𝑔𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 indicates the consistency of bug 
conditions between the two files. It is the cosine similarity between the ranked 
suspiciousness sequence and the corresponding suspiciousness sequence of the 
historical source code file. 

Besides 𝑓𝑖𝑙𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 and 𝑏𝑢𝑔𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒,𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝐵𝑢𝑔𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒-
𝑆𝑐𝑜𝑟𝑒 indicates the consistency of bug conditions between the pair of code blocks. It 
is calculated through restricted growth formula: 

𝑐𝑏𝑀𝑎𝑡𝑐ℎ𝑆𝑢𝑠[𝑖] = 𝑒−𝑘∆𝑠𝑢𝑠 
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Where ∆𝑠𝑢𝑠 is the difference of suspiciousness value between the pair of code blocks. 
Logically, a difference of 0.5 in suspiciousness value indicates a 50% suspiciousness 
relevance of the two code blocks since the case is placed under an ambiguous 
circumstance where the possibility of being completely irrelevant equals that of being 
completely relevant. Therefore, by substituting ∆𝑠𝑢𝑠 with 0.5 and 𝑐𝑏𝑀𝑎𝑡𝑐ℎ𝑆𝑢𝑠[𝑖] 

with 50%, −𝑘 = ln 0.5

50%
≈ −1.38629436112. Therefore, the formula presented is: 

 

𝑐𝑏𝑀𝑎𝑡𝑐ℎ𝑆𝑢𝑠[𝑖] = 𝑒(−1.38629436112)× ∆𝑠𝑢𝑠 

Multiplying the three relevance scores gets the final relevance score for updating the 
current suspiciousness ranking. 

 

After retrieving the historical file’s result, 𝑏𝑢𝑔𝑔𝑦𝐶𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖] records the index of 
the finally fixed buggy code blocks in the historical file. The system refers back to the 
corresponding code block of the current source code file using 𝑐𝑏𝑀𝑎𝑡𝑐ℎ, and adds the 
relevance score to 𝑢𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡, which measures the final weight of updating the 
suspiciousness sequence: 

𝑢𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡[𝑖] =  
∑ (𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑙𝑒𝑗,𝑖)

2
𝑗

∑ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑙𝑒 𝑗𝑗
 

Where 𝑓𝑖𝑙𝑒𝑗,𝑖  is the file that has one of its fixed buggy code blocks index equal to 

𝑐𝑏𝑀𝑎𝑡𝑐ℎ[𝑖] . The final suspiciousness value 𝑓𝑖𝑛𝑎𝑙𝑆𝑢𝑠[𝑖]  is updated according to 
𝑢𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡[𝑖]: 

𝑓𝑖𝑛𝑎𝑙𝑆𝑢𝑠[𝑖] =  𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖]. 𝑠𝑢𝑠 + (1 −  𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘𝑠[𝑖]. 𝑠𝑢𝑠) × 𝑢𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡[𝑖] 

After the process, the code block information of current source code files is written to 
a new debugging analysis and submitted to the database. 
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4. Result and Discussion 

In order to test the system’s accuracy of correctly indicating bugs in the source codes, 
multiple pairs of buggy and fixed source code files written in c++ are used to examine 
the consistency of the output suspiciousness rankings and the buggy lines fixed in the 
correct source code file. 

4.1 Data and Preprocessing 

In order to exhibit the validity of information retrieval section, the testing focuses on 
one coding problem Wanna Go Back Home from AtCoder Grant Contest 003 [18]. 
Throughout the testing, 15 pairs of buggy and fixed source code files are randomly 
chosen from the submission page of the problem (Figure 9). Each pair of buggy and 
correct source code files are written by the same user in AtCoder. The buggy source 
codes are be labeled “WA (Wrong Answer)” in the online judge, and the correct one 
with “AC (Accepted)” (Figure 9).  

 

Figure 9: One of the pairs of buggy and correct source code files for Wanna Go Back 
Home 
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Figure 10: Example Buggy Source Code File (Left) and Correct Source Code File 
(Right) of the source code files pair from AtCoder Beginner Contest 216 Task A – 

Signed Difficulty 

For every pair of buggy and fixed source code files, source code and code block 
descriptions are generated. Source code descriptions are the paraphrased form of the 
problem statement and unique from other source code descriptions, while code block 
descriptions are the translation of code blocks into plain words, as close to the codes as 
possible. 

Complete input and output test case folders are downloaded from its official folder 
atcoder_testcases on Dropbox [19]. All of the test cases are involved in the execution 
of the buggy source code files. 

Preprocessing: 

1. Removal of Comments 

In order to condense the code length and unnecessary runtime, additional 
comments are removed. 

2. Addition of curly braces for single-line loop or conditional statements 

Since the line “route ≪ to_String(__LINE__) ≪ “ ”;” is added to the end of a 
line, single-line loop or conditional statements disable the mechanism to detect 
whether the statements within are passed. Besides, if there are the additional 
line is added after an if that is followed by an else if or else, the syntax will be 
incorrect and lead to compile errors. Therefore, curly braces are added to the 
end of the statements to make the content wrapped in curly braces. 

4.2 Result 

Among the 15 pairs of buggy and correct source code files, 29 code blocks 
turned out to be fixed, each receiving a final suspiciousness value and rank, as 
shown in Figure 11 and Table 2. Through the distribution and mean of the 
suspiciousness value and rank, it can be concluded that the system has identified 
and highlighted most of the fixed buggy code blocks, but the suspicious value 
is mostly concentrated around 40% to 60%, which is not obvious enough to 
indicate the high suspicion of the fixed code blocks. 
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Figure 11: Statistics of the suspiciousness value of fixed code blocks 

 

 

Average suspiciousness 
probability of the fixed 

code blocks 

Average ranking of the fixed 
code blocks 

Absolute Accuracy 
(Fixed code blocks 

ranked No. 1) 

58.58% ± 15.29% No. 3.19 ± 2.11  / 10.93 46.66% 

Table 2: Mean (± Standard Deviation) of the suspiciousness value, rank, and absolute 
accuracy of the fixed code blocks 

 

4.3 Discussion 

After testing with the source code files, multiple conclusions are drawn from the 
statistical results. 

Problems: 

1. Weakened effectiveness under all-WA situations 

Based on the program spectrum formula : 
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 𝑚𝑎𝑥 (

𝑛𝑖,𝐹,1
𝑛𝑖,𝐹,0+𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,1
𝑛𝑖,𝐹,0+𝑛𝑖,𝐹,1

+ 
𝑛𝑖,𝑆,1

𝑛𝑖,𝑆,0+𝑛𝑖,𝑆,1

,
1

𝑢+1
× 

𝑛𝑖,𝑆,1
𝑛𝑖,𝑆,0+𝑛𝑖,𝑆,1

−
𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,0+𝑛𝑖,𝐹,1
𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,0+𝑛𝑖,𝐹,1
+ 

𝑛𝑖,𝑆,1
𝑛𝑖,𝑆,0+𝑛𝑖,𝑆,1

),  

when there are only failed cases, 𝑛𝑖,𝑆,0  and 𝑛𝑖,𝑆,1  both equals 0 , leading the 
suspiciousness value to be definitely 1, making the result inaccurate. 

2. High Time Complexity 

The time complexity of this system is 𝑂(𝑛𝑓 × 𝑛𝑐2 × 𝑛𝑡𝑒𝑟𝑚 × 𝑛𝑑𝑜𝑐 × log 𝑛𝑡𝑜𝑘𝑒𝑛) 
where 𝑛𝑓  is the number of historical files in the most relevant folder, 𝑛𝑐  is the 

number of code blocks in a source code file, 𝑛𝑡𝑒𝑟𝑚 is the number of terms in an 
input text file, 𝑛𝑑𝑜𝑐  is the number of document in the corpus, and 𝑛𝑡𝑜𝑘𝑒𝑛  is the 
number of tokens in each document of the corpus. This system becomes time-
consuming when 𝑛𝑐 is large.  

3. Inaccurate Code block Matchings 

Occasionally, code blocks of the current source code file are matched with 
irrelevant historical code blocks, making the result inaccurate. 

4. Noise Problem 

Due to the fact that the system uses relevance scores as weight for updating weights, 
files and code blocks with little relevance still affect the final suspiciousness ranking, 
making it less accurate. 

Solution: 

To solve the problem occurred under all-WA conditions, I change the design of the 
program spectrum formula to make the suspiciousness value be 0.5 under the 

condition that   𝑛𝑖,𝑆,1

𝑛𝑖,𝑆,0+𝑛𝑖,𝑆,1
 equals 0 and 𝑛𝑖,𝐹,1

𝑛𝑖,𝐹,0+𝑛𝑖,𝐹,1
 doesn’t. The database then 

optimizes the suspiciousness sequence according to the retrieval of the historical 
debugging analysis. An example is shown in Figure 12, which  where initially the 
suspiciousness values of all the potentially buggy code blocks are 100%, yet 
through the optimization mentioned above, the more reasonable result of the 
program spectrum section provides spaces for the information retrieval section to 
update the values according to relevant historical files. 
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 Suspiciousness 
Value (Before) 

Suspiciousness 
Ranking 
(After) 

Fixed 
Code 

Blocks 

Line 19 ~ 22 100.00% 63.03% ✓ 

Line 6 ~ 16 100.00 % 58.97%  

Line 24 ~ 24 100.00% 51.55%  

Figure 12: Comparison of the suspiciousness value before and after the 
optimization is implemented 

Solution Proposal: 

1. After calculations of the IDF value of terms, the system can save the results 
onto the database, and directly use them when there are identical input terms 
afterwards. This approach is especially helpful for common terms. 

2. To solve the inaccuracy of code blocks matching and noise problem, changing 
the code block matching algorithm from textual similarity to control flow graph 
comparison is more accurate regarding the similarity of the functions of the code 
block pairs. 

3. Broaden the number of historical files and folders to provide ample and more 
likely useful references. Once the system can retrieve sufficient relevant files, 
the irrelevant ones will have little impact on the formation of the final 
suspiciousness rankings. 
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5. Conclusion 

5.1 Summary of Findings 

By implementing program spectrum analysis and information retrieval in the system, it 
is demonstrated that the result is stable and moderately accurate, but they are still 
ambiguous. To improve the system’s accuracy and efficiency on localizing bugs, 
calculations should be saved and used when next similar request is made. Also, code 
block matching algorithm can be changed to control flow graph comparison to keep the 
matchings consistent with the relevance of code blocks’ content, while database should 
be constantly expanding to handle wider range of source code files. 

5.2 Future Prospects and Applications 

Currently, this system only support single-file code project written in c++. In the future, 
I expected to expand the programming language support in the future and let more users 
to access the system. 

The system can also be integrated into code editors and IDE (Integrated Development 
Environment) and combined with debuggers. By utilizing the large quantities of source 
codes developed on the platforms, the system can expand the database and implement 
higher quality of fault localization on the input source codes. By saving the developers’ 
development time lengths, this system can ultimately increase the productions of 
software programs and even fasten technological growth. 
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【評語】190013 

這個研究能減少 program debugging 所需的時間因此相當

有價值，但程式的 bugs 有很多種類，此作品需要清楚說明其適

用的 bug 種類。另外，此作品宣稱能找出會造成 logic error 的 

bugs，但一個程式所想達到的 logic 此系統並不會知道，因此此

系統宣稱能偵測到 logic bugs 這個能力有待驗證。另外，此作品

應提供一些具體的例子來支持其宣稱能找出 logic bugs 的能力。 
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