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1.0 Introduction 
Helicopters are used for their ability to take off and land vertically, qualifying them for a host of tasks, 

namely: tourism, aerial observation, and medical transportation (“Helicopter Career Info”, 2017). An 

intriguing physics phenomenon of a helicopter is its potential to hover. A twin bladed single rotor 

helicopter consumes 60 - 85% more power to hover than with forward flight, making the extremely 

manoeuvre inefficient (Lombardi, 2017). A vast amount of literature has been published for optimising 

blade shape and fuselage weight to enhance efficiency. However, the role of a rotors angular velocity has 

never been addressed. Hence, this essay attempts to answer the question “What is the relationship 

between angular velocity and power efficiency of a twin bladed single rotor helicopter system, in hover?”  

The essay seeks to correct Froude's momentum and Drzweicki’s blade element theory, to obtain a 

theoretical model for power efficiency in terms of angular velocity. In order to test the validity of the 

theoretical model, an experiment is devised to evaluate the correlation between the theoretical and 

empirical power data. Firstly, the essay delves into Froude's model and realises the necessity of thrust and 

power coefficient in expressing power efficiency. To accommodate the NACA 0015 aerofoil geometry used 

within this experiment, these coefficients are corrected by integrating small blade elements along the 

blade using Drzewiecki's model. Thereafter, a dependence between air resistance and thrust coefficient is 

established and incorporated using XFOIL simulations. The simulation allows to compare thrust and power 

coefficient against angular velocity with industrial specifications, providing insights into hypothetically 

inefficient, ideal, and efficient ranges for power in terms of angular velocity.  

Correspondingly, the absolute uncertainty for coefficients is found to be substantially large, losing 

confidence with the theoretical model. Hence, to affirm if the investigation is concurrent with empirical 

data, an experiment is devised to simulate a helicopter rotor, obtaining data for power coefficient. The 

empirical and theoretical power coefficient establish a strong correlation, which implied the uncertainties 

accumulated as a consequence of extensive mathematical calculations. Ultimately, the calculated 

coefficients were substituted in the model, yielding a clear relationship between power efficiency and 

angular velocity. This research question is worthy of investigation, as it advances the understanding and 

provides impetus to the research in power performance of aerial crafts. Commercially, we observe the 

demand of various clients including airlines and hobbyists who desire to minimise battery drain time and 

maximise usage, leading to the central question of power efficiency. 

2.0 Background Information 

Power dissipated is the product of force imparted on air and mean air velocity. In order to establish a 

theoretical model for power efficiency, we therefore require inspecting airflow velocity and the different 

forces acting on a rotor system. 
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A hovering helicopter is considered at rest since the body has zero acceleration and so zero net-force. The 

airscrew of a twin bladed single rotor helicopter rotates around a central z-axis, propelling air in a 

downwards vortex known as the slipstream, Figure 1. The slipstream is governed by an inverse relationship 

termed the venturi effect, where the decreasing cross-sectional area (𝐴), increases air velocity (�̅�) (Halliday 

et al., 2014). In the early 20th century, William Froude combined venturi effect with Bernoulli's principle; 

formulating an equation for the axial force (z-plane) lifting a helicopter - thrust (𝑇). 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Bernoulli's principle, the rotor system experiences dynamic pressure (𝑃𝑑) inside and static 

pressure (𝑃𝑠) outside the slipstream boundary, which always adds to a constant (1). The dynamic pressure 

characteristically exhibits proportionality with airflow velocity: 𝑃𝑑 ∝ 𝑣 ̅(Zhao et al., 2019). We assume air 

density is ρ = 1.23 𝑘𝑔𝑚−3 for simplicity, although the value varies with elevation. 

Σ𝑃 = 𝑃𝑠 + 𝑃𝑑 = constant  

Σ𝑃 = 𝑃𝑠 +
1

2
ρ𝑣2̅̅ ̅ = constant (1) 

The airflow velocity increases along slipstream from initial velocity (𝑢 = 0 𝑚𝑠−1) above to final velocity (𝑣) 

below the airscrew, proportionally increasing dynamic pressure. Therefore, the cross-sectional area 

decreases from 𝐴𝑢 above to 𝐴𝑣 below the airscrew by the venturi effect, proportionally decreasing static 

pressure from 𝑃1to 𝑃2 respectively, preserving the constant relationship in (1). 
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Above airscrew: ΣP = P1 +
1

2
ρu2  

Bellow airscrew: ΣP = P2 +
1

2
ρv2  

𝑃1 +
1

2
ρ𝑢2 = 𝑃2 +

1

2
ρ𝑣2  

Then rearranging the equation to find pressure differential experienced by the airscrew, we have 

P1 − P2 =
1

2
ρ(u2 − v2)  

Dynamic pressure differential: ΔPd = P2 − P1 =
1

2
𝜌𝑣2      (Since, u = 0ms−1)  

2.1 Induced velocity and thrust: 

Froude argued, since pressure is the quotient of net-force and cross-sectional area, a greater dynamic 

pressure beneath the blade causes an upwards directed net-force, Figure 2. This net-force is termed thrust, 

acting orthogonal to airflow on the airscrew (2) (Venkatesan, 2012). The airscrew area is assumed to be 

circular where blade's radius is 𝑅, denoted by 𝐴𝑖 = π𝑅2. 

ΣForce𝑛𝑒𝑡 = 𝑃𝑑(𝐴𝑖)  

𝑇 =
1

2
𝐴𝑖ρ𝑣2  

𝑇 =
1

2
ρπ𝑅2𝑣2 (2) 
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Conversely, Froude proposed an alternative argument where air particles are the frame of reference. Air 

particles have negligible mass, requiring mass flow rate (�̇�) defined as the fluid mass passing the airscrew 

per unit time. Mass can also be considered as volumetric density (𝑚 = 𝑉ρ), where velocity of air 

positioned at the rotor is known as induced velocity (𝑣𝑖). 

�̇� =
Δ𝑚

Δ𝑡
  

�̇� =
𝑉ρ

𝑡
 ⟹  �̇� = ρ𝐴𝑖𝑣𝑖  

Elastic collision occurs between air particles and airscrew for conserving momentum in the system, 

producing an equal and opposite axial thrust force (Gessow & Myers, 1985). Substituting �̇� in Newton’s 

second law, we obtain thrust (3). We assume ideal gas properties are preserved in such high-pressure 

situations for simplicity. 

F = ma ⟹  𝐹 = ṁ(Δv̅)  

𝑇 = ρ𝐴𝑖𝑣𝑖(𝑣 − 𝑢)  

𝑇 = ρπ𝑅2𝑣𝑖𝑣 (𝑆𝑖𝑛𝑐𝑒, 𝑢 = 0𝑚𝑠−1) (3) 

Realising (2) and (3) model thrust and incorporate similar variables except for velocity, equating the two 

expressions yields an important velocity identity (4). 

𝑇 = ρπ𝑅2𝑣𝑖𝑣 =
1

2
ρπ𝑅2𝑣2  

2𝑣𝑖 = 𝑣 (4) 

Thereby, substituting this velocity identity within (2) and (3), we may derive a unified thrust equation (5). 

Moreover, by isolating induced velocity we determine an equation for velocity at the airscrew (6). This 

model for force and velocity is Froude's momentum theory (Gessow & Myers, 1985). 

𝑇 = ρπ𝑅2𝑣𝑖(2𝑣𝑖) =
1

2
ρπ𝑅2(2𝑣𝑖)2  

𝑇 = 2ρπ𝑅2𝑣𝑖
2 (5) 

𝑣𝑖 = √
𝑇

2ρπ𝑅2
 (6) 

2.2 Power and power efficiency: 

Recalling from earlier, power (�̅�) can now be defined as the product of axial thrust force orthogonal to 

airflow and induced air velocity shown in (7). 



 
 

5 

Power efficiency is the ratio between useful and total power, expressed in percentage. In fluid mechanics, 

useful power is represented by (7), as here the fluid behaves in an ideal system without viscosity. Viscosity 

measures a fluids resistance to deformation (Adminstration, 2020). Total power refers to power measured 

experimentally (𝑃𝑒𝑥𝑝
̅̅ ̅̅ ̅), where aerodynamic losses due to resistive forces are considered. Hence, expanding 

for power efficiency yields (8). 

The exploration in deriving power efficiency has laid the foundation for this essay. This foundation allows 

incorporating the important concept of angular velocity. 

3.0 Extending Power Efficiency 

Investigations in fluid mechanical systems incorporate coefficients, as they allow simplifying power 

performance equations (Gessow & Myers, 1985). The thrust coefficient (𝑐𝑇) recognises the ratio between 

total thrust produced and cross-sectional area (9). Similarly, power coefficient recognises the ratio 

between power required and cross-sectional area (9). These coefficients recognise blade velocity in circular 

motion, 𝑣𝑏𝑙𝑎𝑑𝑒 = ω𝑅, where ω represents the blade's angular velocity. Also notice, these equations are 

non-dimensional and thus have no unit. 

Thrust coefficient: 𝑇 = 𝑐𝑇ρπ𝑅2(ω𝑅)2            Power coefficient: �̅� = 𝑐𝑃ρπ𝑅2(ω𝑅)3  

𝑐𝑇 =
𝑇

ρπ𝑅2(ω𝑅)2
                                                 𝑐𝑃 =

�̅�

ρπ𝑅2(ω𝑅)3
 (9) 

In order to substitute the coefficients for power efficiency, we first require expressing induced velocity in 

terms of the coefficients. Therefore, induced velocity from (6) simplifies to (10). 

𝑣𝑖 = √
𝑇

2ρπ𝑅2
= √

𝑐𝑇ρπ𝑅2(ω𝑅)2

2ρπ𝑅2
  

𝑣𝑖 = ω𝑅√
𝑐𝑇

2
 (10) 

Substituting induced velocity from (10), thrust and power coefficient all in (8), we obtain a simplified form 

for power efficiency (11). 

η = √
𝑐𝑇

3

2𝑐𝑃
2 × 100 = 70.7 ×

𝑐𝑇

3
2

𝑐𝑃
 (11) 

�̅� = 𝐹𝑣 ⟹  𝑇𝑣𝑖 (7) 

𝜂 =
Useful Power

Total Power
× 100 ⟹ 𝜂 =  

𝑇𝑣𝑖

𝑃𝑒𝑥𝑝
̅̅ ̅̅ ̅

× 100 (8) 
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The sections hereafter are based on calculating thrust and power coefficients to determine a relationship 

between power efficiency and angular velocity (ω). 

4.0 Slipstream Correction for Pitch Angle 

Pitch angle/ pitch (θ) refers to the angle a blade makes with the horizontal (x-axis). Empirical analysis 

confirms, thrust cannot be produced without pitch (Venkatesan, 2012). Unified thrust in (5) assumes a 

zero-pitch system and so fails to satisfy the properties that change with pitch. These properties are 

illustrated in Figure 3 and Table 1. 

 

Properties changed Description 

Angular velocity (𝜔) 
A blade rotating through air, is similar to air flowing across a stationary blade 
with angular velocity (𝜔) and tangential velocity (𝜔𝑟), depending on the radial 
position of blade (𝑟). 

Inflow velocity 
(𝑣𝑖 and 𝜔𝑟) 

Along with induced velocity (z-plane), air also has tangential velocity: 𝜔𝑟 (x-
y plane). The vector sum of velocities is resultant velocity, 𝑣𝑅 (12). 

𝑣𝑅 = √𝑣𝑖
2 + (ω𝑟)2 

(12) 

Due to these properties, pitch comprises of inflow angle of attack (Inflow AoA (ϕ)) and angle of attack 

(AoA (α)), demonstrated in Figure 4 and (13). The inequality θ >  ϕ and θ >  α holds true, hence by the 

small angle approximation, the quotient of induced and tangential velocity tan ϕ  is approximately equal to 
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ϕ  (14). As inflow AoA is small, so is induced velocity and therefore resultant velocity in (12) is best 

approximated by tangential velocity (15). 

θ =  ϕ +  α (13) 

tan ϕ =
𝑣𝑖

ω𝑟
≈  ϕ (14) 

𝑣𝑅 ≈ ω𝑟 (15) 

The force perpendicular to airflow is lift (𝐿) and a new force parallel to airflow also exists, termed drag (𝐷), 

Figure 4. The vertical component of lift and drag produces thrust. As the inflow AoA is insignificant (ϕ ≈ 0), 

trigonometric ratios reduce to cos ϕ → 1 and sin ϕ → 0. Hence, thrust approximately equals lift (16). 

𝑇 = 𝐿 cos ϕ + 𝐷 sin ϕ  

𝑇 ≈ 𝐿 (16) 

5.0 Determining Thrust Coefficient 

Realise, the force orthogonal to airflow is lift, corresponding with Bernoulli's principle (2) 

𝐿 =
1

2
𝐴ρ𝑣2̅̅ ̅  
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Substituting resultant velocity (15) in lift, we recognise as radial position (𝑟) increases from hub (𝑟 = 0) to 

tip (𝑟 = 𝑅), lift also increases with each blade element (𝑑𝑟). This implies lift is non-uniformly produced 

along the blade. The blade element theory suggests, the cumulative sum of all blade elements is total lift 

and hence we use integration (Gessow & Myers, 1985). Furthermore, the blade element area is rectangular 

and therefore product of infinitesimal length (𝑑𝑟) and chord width (𝐶) shown in Figure 3. 

𝐿 = ∫
1

2
𝐶ρ(ω𝑟)2

𝑅

0

𝑑𝑟  

Incorporating an empirical factor known as the lift coefficient (𝑐𝐿) allows accounting for the NACA 0015 

aerofoil geometry used in our experiment (see section 7). The lift coefficient is a first order function when 

mapped with AoA (α) and passes through origin (α, 𝑐𝐿): (0,0) (Venkatesan, 2012). The function is 𝑦 =

𝑚𝑥 ⟺ 𝑐𝐿 = 𝑎𝛼, where '𝑎' is the lift-curve gradient. We make AoA subject of (13) and further substitute 

inflow AoA (14) for lift. 

𝐿 = ∫
1

2
𝐶ρ(ω𝑟)2

𝑅

0

𝑐𝐿𝑑𝑟 = ∫
1

2
𝐶ρ(ω𝑟)2

𝑅

0

𝑎α𝑑𝑟  

α = θ − ϕ ⟹  𝛼 = θ −
𝑣𝑖

ω𝑟
  

𝐿 = ∫
1

2
𝐶ρ(ω𝑟)2

𝑅

0

𝑎 (θ −
𝑣𝑖

ω𝑟
) 𝑑𝑟  

We simplify lift and remove constants outside the integral. Since, lift only considers force from one blade, 

multiplying by 2 yields total lift. As lift-thrust identity (16) holds true, total lift approximates thrust (17). 

𝐿 =
1

2
𝐶ρ𝑎 ∫ θ(ω𝑟)2

𝑅

0

− 𝑣𝑖(ω𝑟)𝑑𝑟  

𝑇 = 𝐶ρ𝑎 ∫ θ(ω𝑟)2
𝑅

0

− 𝑣𝑖(ω𝑟)𝑑𝑟 (17) 

Lastly, we can now determine the corrected thrust coefficient using (9), by substituting for the corrected 

thrust (17). Realise by dividing the fraction, we obtain a new variable, �̅� =
𝑟

𝑅
 (Venkatesan, 2012). Hence, 

boundary conditions change; lower limit lim
𝑟→0

�̅� = 0 and upper limit lim
𝑟→𝑅

�̅� = 1. 

𝑐𝑇 =
𝑇

ρπ𝑅2(ω𝑅)2
 ⟹  

𝐶ρ𝑎 ∫ θ(ω𝑟)2𝑅

0
− 𝑣𝑖(ω𝑟)𝑑𝑟

ρπ𝑅2(ω𝑅)2
 

 

𝑐𝑇 =
𝐶𝑎

π𝑅
∫ (θ(�̅�)2 −

𝑣𝑖

ω𝑅
(�̅�)) 𝑑�̅�

1

0

  

To further simplify, we assume inflow AoA ϕ =
𝑣𝑖

ω𝑟
≈

𝑣𝑖

ω𝑅
. This assumption is valid as magnitude for 

tangential velocity along the blade (ω𝑟) approximates to that at the tip (ω𝑅), since dynamic pressure is 
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significantly larger at the tip, due to the proportionality between dynamic pressure and radial position. 

Substituting this approximation and solving the integral we obtain the thrust coefficient (18). 

𝑐𝑇 =
𝐶𝑎

π𝑅
∫ (θ𝑟2̅̅ ̅ − ϕ�̅�)𝑑�̅�

1

0

=
𝐶𝑎

π𝑅
[
θ𝑟3̅̅ ̅

3
−

ϕ𝑟2̅̅ ̅

2
]

0

1

  

𝑐𝑇 =
𝐶𝑎

π𝑅
(

θ

3
−

ϕ

2
) (18) 

Since, chord width (𝐶 =  0.0180 ± 0.00500𝑚), radius of blade (𝑅 =  0.0900 ± 0.00500𝑚) and pitch 

(θ =  0.157 ± 0.00900𝑟𝑎𝑑) are measured variables in the experiment (see section 7), we require to know 

inflow angle of attack and lift-curve gradient to determine thrust coefficient. 

5.1 Determining inflow angle of attack: 

We still assume ϕ =
𝑣𝑖

ω𝑟
≈

𝑣𝑖

ω𝑅
 to keep inflow AoA constant with radial position, otherwise the investigation 

becomes convoluted. Notice, (10) from section 3 can be rearranged to the form 
𝑣𝑖

ω𝑅
, which by our 

assumption approximates to the inflow AoA. 

𝑣𝑖 = ω𝑅√
𝑐𝑇

2
 ⟹  ϕ ≈

𝑣𝑖

ω𝑅
= √

𝑐𝑇

2
  

Substituting for thrust coefficient (18) and lift-curve gradient, 𝑎 = 2π (explained in section 5.2), we express 

inflow AoA as a quadratic. 

ϕ2 =
𝑐𝑇

2
=

𝐶𝑎

2π𝑅
(

θ

3
−

ϕ

2
)  

(
𝑅

𝐶
) ϕ2 + (

1

2
) ϕ −

θ

3
= 0  

Replacing values measured in experiment (see section 7) forms a quadratic (19). 

5.00𝜙2 + 0.500𝜙 − 0.0520 = 0 (19) 

The steps for error propagation are demonstrated bellow. 
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 We obtain an original, maximum, minimum value for inflow AoA after implementing the uncertainties and 

graphically solve them in the domain (0, ∞). The original quadratic (19) yields ϕ =  0.0640𝑟𝑎𝑑 (Figure 5a). 

5.00ϕ2 + 0.500ϕ − 0.0520 = 0  

The maximum quadratic yields ϕ =  0.0740𝑟𝑎𝑑 (Figure 5b). 

5.00𝜙2 + 0.500𝜙 − 0.0520 = 0  

The minimum quadratic yields ϕ =  0.0560𝑟𝑎𝑑 (Figure 5c). 

6.70ϕ2 + 0.500ϕ − 0.0550 = 0  

 

Hence, a good approximation for inflow AoA is the mean (ϕ̅) of range and for uncertainty is unbiased 

standard deviation (σϕ) demonstrated below. 

ϕ̅ =
ϕ1 + ϕ2 + ϕ3

3
=

0.056 + 0.064 + 0.074

3
= 0.0650  

σϕ = √
(ϕ1 − ϕ̅)2 + (ϕ2 − ϕ̅)2 + (ϕ3 − ϕ̅)2

𝑁 − 1
 

 

σϕ = √
(0.056 − 0.065)2 + (0.064 − 0.065)2 + (0.074 − 0.065)2

2
= 0.00903 

 

Therefore, inflow AoA, ϕ =  0.0650 ± 0.00903 to 3.sig.fig. 

5.2 Determining lift-curve gradient: 

The lift-curve gradient accounts for resistive forces caused by the blade’s (aerofoil) geometry. Air 

resistance results from skin friction and form drag creating turbulence, Figure 6. Turbulence decreases 

(5.00 ± 0.170)𝜙2 + 0.500𝜙 − (0.0520 ± 0.00300) = 0  
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tangential velocity, proportionally decreasing dynamic pressure (Administration, 2020). By Froude's 

argument this decreases thrust. 

The industrially averaged magnitude for lift-curve gradient is 𝑎 = 2π, for all angular velocities and aerofoil 

(Scott, 2018). The lift-curve gradient of lift coefficient against AoA (𝑐𝐿 vs ) graph can be found using XFOIL; 

a fluid simulation programme. XFOIL develops a unique environment for varying angular velocities of a 

rotor based on Reynolds number (Re), which predicts airflow patterns (Halliday et al., 2014). After 

undergoing a mathematical process (see Appendix 1), Reynolds number is found using simplified form (20). 

𝑅𝑒 = 1266.98(ω𝑅) (20) 

To determine Reynolds number, we require to define angular velocities to simulate in XFOIL. The 

experiment in section 7, uses revolutions per minute (𝑅𝑃𝑀 𝑚𝑖𝑛−1) as a relative measure for angular 

velocity. The experiment uses a motor with an operational range from 0 − 7000 𝑅𝑃𝑀, where tests are 

conducted in increments of 250 𝑅𝑃𝑀. We will therefore simulate within the operational range and the 

same increments. RPM determines frequency of revolution, hence conversion to angular velocity requires 

conversion factor 
2π

60
. A sample set of conversions is shown in Table 2, where values are rounded to 𝑅𝑃𝑀 of 

lowest significant figure. Substituting angular velocities, we obtain Reynolds numbers displayed in sample 

Table 2 (see Appendix 2). Error propagation is unnecessary as XFOIL does not recognise error, decreasing 

the confidence in lift-curve gradient. 
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Reporting Reynolds number to XFOIL, a simulation is produced in one tab (see Figure 7a) and a 𝑐𝐿 vs α 

table in the other. The table is then converted to a graph (see Figure 7b), which uses 26 𝑟𝑎𝑑𝑠−1 as an 

example. A linear regression line is graphed to verify linearity, which as indicated by the Pearson 

correlation coefficient 𝑟 = 0.998 is very strong. However, a systematic error is observed as the regression 

line intersects the y-axis at (α, 𝑐𝐿): (0, −0.007), but not the origin. The difference between y-intercepts is 

negligible, hence the graph can be considered reliable. The lift-curve gradient for 26𝑟𝑎𝑑𝑠−1 is 𝑎 = 1.47 to 

3.sig.fig. The remaining angular velocities are found similarly, shown in sample Table 3 (see Appendix 3). 

Data from Table 3 is quantitatively demonstrated as a graph in Figure 8. The mean for all lift-curve gradient 

points is represented as a mean line (𝑎𝑡ℎ𝑒𝑜 = 4.81). An industrially agreed mean line is also illustrated 
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(𝑎𝑒𝑚𝑝 = 2π = 6.28). The data points < 𝑎𝑡ℎ𝑒𝑜 (0 − 222𝑟𝑎𝑑𝑠−1) shows a theoretically inefficient range, as 

a great proportion of work is lost to turbulence, which decreases dynamic pressure. Similarly, data points 

between 𝑎𝑡ℎ𝑒𝑜 and 𝑎𝑒𝑚𝑝 (222 − 240𝑟𝑎𝑑𝑠−1 and 431 − 733𝑟𝑎𝑑𝑠−1) indicates an ideal range, as 

predominant amount of work is used to generate thrust. Lastly, data points > 𝑎𝑒𝑚𝑝 (240 − 431𝑟𝑎𝑑𝑠−1) 

represents an efficient range, as resistive forces insignificantly impact dynamic pressure and therefore, 

most work generates thrust. 

5.3 Determining thrust coefficient: 

Recalling (18), we can now find the thrust coefficient with respect to angular velocity. However, the thrust 

coefficient is theoretically deduced and fails to recognise mechanical losses for e.g. bearing friction. This 

requires to implement a constant 𝑘 =  1.75 (Venkatesan, 2012). 

𝑐𝑇 = 𝑘
𝐶𝑎

𝜋𝑅
(

𝜃

3
−

𝜙

2
)  

Substituting values for the variable's, we obtain thrust coefficient demonstrated in Table4 (see Appendix 

4). The thrust coefficient is calculated to 3.sig.fig, as the variable with smallest significant figure. 

Uncertainty for the thrust coefficient are found with steps bellow. 
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The data from Table 4 is quantitatively represented as a graph in Figure 9. The trend closely corresponds 

with lift-curve gradient against angular velocity graph in Figure 8. The mean of all thrust coefficient data 

points is illustrated with a mean line. Although error bars are substantially large, the inefficient range is 

positioned below the mean line and the opposite is true for ideal and efficient ranges providing confidence 

with our speculations. 
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6.0 Determining Power Coefficient 

The power determined in (7) is unsatisfactory, as it omits variables such as, resultant velocity and air 

resistance. Hence, we may consider a new approach, which focuses on the revolution of an airscrew. 

Power is tangential force (𝐹) experienced by an aerofoil along a distance (𝑠) divided by some time elapsed 

(Δ𝑡) to travel the distance (see Figure 10a). 

�̅� = 𝐹𝑣 =
𝐹𝑠

Δ𝑡
  

The magnitude of arc length travelled can be expressed as 𝑠 = β𝑅, where the aerofoil revolves an angle β 

in Δ𝑡 time. Notice, 
β

Δ𝑡
 is the definition of angular velocity. Power is therefore the product of tangential force 

and velocity. 

�̅� =
𝐹𝛽𝑅

Δ𝑡
= 𝐹(𝜔𝑅)  
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 Additionally, considering air as the frame of reference, 

tangential force is the horizontal component of lift and drag, 

Figure 10b. The small angle approximation for inflow AoA 

simplifies sin ϕ →  𝜙 and cos ϕ → 1. Lift and drag may be 

expanded using the blade element theory by integrating along 

the blade’s length. The expanded expression for drag is 

equivalent to lift except for the drag coefficient (𝑐𝐷) (Gessow & 

Myers, 1985). 

�̅� =
1

2
𝐶ρω𝑅 [𝑎ϕ ∫ θ(ω𝑟)2

𝑅

0

− 𝑣𝑖(ω𝑟)𝑑𝑟 + ∫ (ω𝑟)2
𝑅

0

𝑐𝐷𝑑𝑟]  

We multiply the power equation by two, in order to consider both blades (21). Substituting power within 

the power coefficient from (9) and dividing by the denominator, we observe the variable �̅� =
𝑟

𝑅
. The 

boundary conditions change (see Section 5). 

�̅� = 𝐶ρω𝑅 [𝑎ϕ ∫ θ(ω𝑟)2
𝑅

0

− 𝑣𝑖(ω𝑟)𝑑𝑟 + ∫ (ω𝑟)2
𝑅

0

𝑐𝐷𝑑𝑟] (21) 

𝑐𝑃 =
�̅�

ρπ𝑅2(ω𝑅)3
=

𝐶ρω𝑅 [𝑎ϕ ∫ θ(ω𝑟)2𝑅

0
− 𝑣𝑖(ω𝑟)𝑑𝑟 + ∫ (ω𝑟)2𝑅

0
𝑐𝐷𝑑𝑟]

ρπ𝑅2(ω𝑅)3
 

 

𝑐𝑃 = ϕ ∫
𝐶𝑎

π𝑅
(θ𝑟2̅̅ ̅ − ϕ�̅�)𝑑𝑟

1

0

+ ∫
𝐶

π𝑅
(𝑟3̅̅ ̅𝑐𝐷)𝑑𝑟

1

0

  

Notice, the first integral simplifies to the thrust coefficient (18). Solving the integral, we obtain the power 

coefficient (22). 

𝑐𝑃 = ϕ𝑐𝑇 + ∫
𝐶

π𝑅
(𝑟3̅̅ ̅𝑐𝐷)𝑑𝑟

1

0

  

𝑐𝑃 = ϕ𝑐𝑇 +
𝐶

4π𝑅
𝑐𝐷 (22) 

The power coefficient can only be found after determining the drag coefficient. 

6.1 Determining drag coefficient: 

�̅� = 𝜔𝑅 [∫ (𝐿 sin 𝜙 + 𝐷 cos 𝜙)𝑑𝑟
𝑅

0

] = 𝜔𝑅 ∫ (𝐿𝜙 + 𝐷)𝑑𝑟
𝑅

0

 
 

�̅� = 𝜔𝑅 ∫ (
1

2
𝐶𝜌(𝜔𝑟)2𝑐𝐿) 𝜙𝑑𝑟

𝑅

0

+ ∫
1

2
𝐶𝜌(𝜔𝑟)2

𝑅

0

𝑐𝐷𝑑𝑟 
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The drag coefficient incorporates resistive forces acting on a NACA 0015 aerofoil. Similar to the lift 

coefficient, drag coefficient is found using XFOIL. After inserting the calculated Reynolds numbers (Table 3), 

a 𝑐𝐷 vs α table is generated. Since, AoA is α = θ −  ϕ = 0.157 − 0.0650 = 0.0920 𝑟𝑎𝑑, we select drag 

coefficients at α = 0.0920𝑟𝑎𝑑 for all angular velocities displayed in sample Table 5 to 3 sig.fig (see 

Appendix 5). Uncertainty is not calculated as XFOIL doesn't recognise error, decreasing confidence with 

drag coefficient. 

6.2 Determining power coefficient: 

We can now calculate power coefficient (22). Recall from section 5.3, in order to consider mechanical 

losses, we incorporate a constant 𝑘 = 1.75. 

𝑐𝑃 = 𝑘 (ϕ𝑐𝑇 +
𝐶

4π𝑅
𝑐𝐷)  

Substituting for the variables, we obtain power coefficient demonstrated in sample Table 7 (see Appendix 

6). Uncertainty calculations are displayed bellow to 3 sig.fig, similar to the variable with lowest significant 

figure. However, we make an exception and increase significant figures of angular velocity to 3 sig.fig, for 

maximising accuracy and precision when analysing data. 
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The data in Table 7 is represented as a graph in Figure 11. For a system to be power efficient, the thrust 

and power to area ratio must strictly maximise and minimise respectively. The mean of all power 

coefficient data points are represented as a mean line. The angular velocities between 0 − 183𝑟𝑎𝑑𝑠−1 are 
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power inefficient, as they demonstrate a low thrust (see Figure 9), but a large power coefficient. This 

suggests most power is used to overcome resistive forces. Moreover, angular velocities between 183 −

733𝑟𝑎𝑑𝑠−1 in retrospect are not power efficient, as they have a large thrust and power coefficient. Here, 

most power is used to generate thrust than lost to air resistance and therefore, has ideal efficiency 

contrary to speculations. 

 

7.0 Determining Experimental Power Coefficient 

An experiment was designed to observe power dissipated, later converted to power coefficient in revolving 

a twin bladed airscrew by a brushless DC motor (BLDC motor). Thrust measurements for determining 

thrust coefficient are not accounted, as the measuring scale provided misleading results (see Figure 12). 

The experiment is necessary to validate whether the theoretical data (see section 5.3 and 6.2) corresponds 

with experimental data. This is important as it allows to find a reason for the large error bars seen with the 

coefficients, any sources of error or confounding variables. 

7.1 Experimental Setup 

In 1920-33, the National Advisory Committee for Aeronautics (NACA) designed and tested various 

standardised aerofoils (Allen, 2017). I selected their NACA 0015 aerofoil, for its symmetric geometry and 
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ease to 3D print.  The aerofoil was printed with dimensions stated in Table 8 and went on top of BLDC 

motor. 

The experiment setup is represented in Figure 12. An Arduino Mega 2560 microcontroller used a 

preloaded code (see Appendix 9) to change RPM of motor (Nedelkovski, 2019). A tachometer measures the 

frequency of reflections from a reflective adhesive on the motor to determine the motors RPM. A power 

analyser measured the total power used by the load. A camera positioned above the setup, recorded the 

displayed readings. 

7.2 Experiment procedure 

• Independent variable: Angular velocity measured in RPM. 

• Dependent variable: Power dissipated in the system. 

A physical limitation of the motor is, it harshly vibrated between 0 < ω ≤ 314𝑟𝑎𝑑𝑠−1 and 681 ≤ ω <

733𝑟𝑎𝑑𝑠−1 deviating the photo tachometer readings. I realised to minimise systematic error; the testing 

range should be between 314 ≤ ω ≤ 681𝑟𝑎𝑑𝑠−1. Additionally, the angular velocity readings never 

remained constant while performing preliminary tests. Hence, I decided the experiment would be 

conducted in intervals of 250 𝑅𝑃𝑀 (26.2𝑟𝑎𝑑𝑠−1) beginning from 301  <  ω  ≤  327𝑟𝑎𝑑𝑠−1 and ending 
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with 668 < ω ≤ 694𝑟𝑎𝑑𝑠−1. Each interval would be tested 5 times, for 15 seconds with a stopwatch. The 

data was collected from video recordings and is displayed in Appendix 7. 

7.2 Theoretical vs experimental power coefficient 

The RPM were converted to angular velocity using the factor 
2π

60
 (see Section 5.2). The angular velocity 

within an interval is best demonstrated by its mean. The mean for power measured within the interval, is 

suitable for the same reasoning. Such means are demonstrated in sample Table 9 for the first 5 intervals. 

Recall, the power coefficient (9). Substituting values from Table 9 yields the experimental power 

coefficient, also shown in sample Table 9. 

𝑐𝑃 =
�̅�

ρπ𝑅2(ω̅𝑅)3
  

The experimental and theoretical data points from Table 7 and 9 are illustrated as a graph in Figure 13, 

with ordinates drawn to indicate the experimented range. Both curves are close to perfect fit, as the 

experimental outcomes are more exaggerated deviating around 314 and 680 𝑟𝑎𝑑𝑠−1. Nevertheless, both 

power coefficients have similar properties such as, a curve fit which monotonically decreases with angular 

velocity. Their gradient (
𝑑𝑐𝑃

𝑑ω
) converges to 0 from 550 to 600 𝑟𝑎𝑑𝑠−1 as both curves either seem to or form 

a plateau. Error bars are also useful, as experimental data follows the trend well within the error bars of 

the theoretical data. Hence, the theoretical model closely resembles outcomes from the experiment. 
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8.0 Determining Power Efficiency 

Realise, we can finally determine power efficiency (11). Substituting the trust and power coefficient, yields 

power efficiency displayed in sample Table 10 (see Appendix 8). 

η = 70.7 ×
𝑐𝑇

3
2

𝑐𝑃
 

 

Uncertainty for power efficiency is propagated with steps displayed below. 
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Table 10 is then converted to a power efficiency against angular velocity graph in Figure 14. The general 

trend line increases and plateaus in a regular succession. Power efficiency at smaller angular velocities (0 −

157𝑟𝑎𝑑𝑠−1) are an order of magnitude inefficient than at larger ones (314 − 733𝑟𝑎𝑑𝑠−1) confirming the 

inefficient and ideal ranges respectively. The maximum efficiency peaks at 54.6% is just under the 

maximum possible efficiency by Betz limit at 59.3% (Burton, 2009). Negative uncertainties cannot exist. As 

aforementioned, large uncertainties are caused by exhaustively using multiple equations to reach this 

relationship. Hence, the data quality is not compromised. 
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9.0 Evaluation and Conclusion 

In investigating the research question, we decided to determine power efficiency with the thrust and 

power coefficient, resulting in many interesting observations. 

Firstly, we found a limitation with Froude’s model, in that it assumed a zero-pitch system, omitting internal 

forces and velocities. Hence, modifications such as blade element theory were made to implement pitch, 

enhancing the correlation between empirical and theoretical data.  

In determining the thrust coefficient, XFOIL allowed to find lift-curve gradient and an analysis with 

industrial specification. This categorised angular velocity into an inefficient, ideal and efficient range, 

where smaller angular velocities in comparison to larger angular velocities required a substantial amount 

of power to overcome resistive forces. The power coefficient showed similar efficiencies, except for the 

efficient range. The experiment validated the theoretical ranges and realised the large uncertainties were 

of a purely mathematical consequence. Hence, the inefficient and ideal ranges were confirmed as 

maximum power efficiency peaked only at 54.6%. However, a limitation with this experiment was the 

small, experimented range for angular velocity, not allowing a full comparison with the theoretical model. 

In conclusion a clear proportionality is visible between angular velocity and power efficiency for a twin 

bladed single rotor helicopter in hover. As we increase angular velocity, power efficiency increases then 

plateaus and repeats the same trend once again.  

This investigation is not completely accurate, due to uncertainties and limitations. A part of these 

uncertainties arises from assumptions made within the theoretical model. For instance, assuming thrust 

linearly increases along the blade. Empirically, the tip produces negligible thrust, as the substantial 

dynamic pressure differential occurs from 20 to 80% of the blade (Adminstration, 2020). Secondly, a vortex 

known as induced drag is formed at the blade’s tip, which moderately increases air resistance. This was not 

implemented in XFOIL adding unaccounted systematic error (Adminstration, 2020). Thirdly, the motor 

harshly vibrated at the first (301 < ω ≤ 327𝑟𝑎𝑑𝑠−1) and last interval (668 < ω ≤ 694𝑟𝑎𝑑𝑠−1), 

influencing the tachometer and power analyser, causing random error in data. This may explain deviations 

at the start and end of the experimental power coefficient. However, I realised that seeking for a perfect 

match with the experimental data is ambitious, as the investigation then becomes an extraneous 

mathematical process reducing its ability to explain physics. 

This investigation raises many questions, including one which initially inspired me: what angular velocity 

against power efficiency relationship can geometrically varied aerial vehicles such as, bicopters and 

tricopters demonstrate? Irregularly positioning rotor systems, makes the slipstream geometry unique and 

transcends the scope of this investigation. Many interesting problems arise, as the rotors must produce 

variable thrust to balance while hovering. Such an investigation would be incredibly interesting. 
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Appendix 1: Simplifying Reynolds Number  

Reynolds number measures airflow patterns, based on the properties of air. In fluid mechanics one form 

Reynolds number can take is displayed bellow. Here, 𝜈 is kinematic viscosity, 𝜈𝑟 is resultant velocity of airfoil 

and 𝐶 is chord length. Kinematic viscosity of air at sea level and normal room temperature is: 𝜈 =

1.42 × 10−5. 

𝑅𝑒 =
𝐶𝑣

𝜈
 

We substitute the value for variables from section 7 and use resultant velocity (15). However, realise 

𝑣𝑅 = 𝜔𝑟 ≈ 𝜔𝑅 as dynamic pressure is substantially large at the tip and approximately equal to that across 

the blade. Hence, by venturi effect tangential velocity at tip is also approximately equal to that across 

the blade. 

𝑅𝑒 =
(0.0180)𝜔𝑅

0.0000142
 

𝑅𝑒 = 1266.98𝜔𝑅 

 

 

  



 
 

27 

Appendix 2: Conversion between Angular Velocity and Reynolds Number  
  

Revolution per 
minute (RPM) 

Angular 
velocity (ω) 

Tangential 
velocity (ωR) 

Reynolds 
Number (Re) 

/𝒎𝒊𝒏−𝟏 /𝒓𝒂𝒅𝒔−𝟏 /𝒎𝒔−𝟏 - 

0 0 0.0 0 

250 26 2.4 2991 

500 52 4.7 5982 

750 79 7.1 8972 

1000 105 9.4 11963 

1250 131 11.8 14954 

1500 157 14.1 17945 

1750 183 16.5 20935 

2000 209 18.8 23926 

2250 236 21.2 26917 

2500 262 23.6 29908 

2750 288 25.9 32899 

3000 314 28.3 35889 

3250 340 30.6 38880 

3500 367 33.0 41871 

3750 393 35.3 44862 

4000 419 37.7 47853 

4250 445 40.1 50843 

4500 471 42.4 53834 

4750 497 44.8 56825 

5000 524 47.1 59816 

5250 550 49.5 62806 

5500 576 51.8 65797 

5750 602 54.2 68788 

6000 628 56.5 71779 

6250 654 58.9 74770 

6500 681 61.3 77760 

6750 707 63.6 80751 

7000 733 66.0 83742 



 
 

28 

Appendix 3: Determination of Lift-curve Gradient  
 

  Angular 
velocity (ω) 

Tangential 
velocity (ωR) 

Reynolds 
Number (Re) 

Lift-curve 
gradient (a) 

/𝒓𝒂𝒅𝒔−𝟏 /𝒎𝒔−𝟏 - - 
0 0.0 0 0.00 
26 2.4 2991 1.47 
52 4.7 5982 1.28 
79 7.1 8972 1.23 

105 9.4 11963 1.22 
131 11.8 14954 1.23 
157 14.1 17945 1.25 
183 16.5 20935 3.06 
209 18.8 23926 4.28 
236 21.2 26917 5.14 
262 23.6 29908 6.14 
288 25.9 32899 7.13 
314 28.3 35889 7.66 
340 30.6 38880 7.60 
367 33.0 41871 7.26 
393 35.3 44862 6.84 
419 37.7 47853 6.51 
445 40.1 50843 6.02 
471 42.4 53834 5.69 
497 44.8 56825 5.42 
524 47.1 59816 5.27 
550 49.5 62806 5.25 
576 51.8 65797 5.26 
602 54.2 68788 5.36 
628 56.5 71779 5.44 
654 58.9 74770 5.52 
681 61.3 77760 5.62 
707 63.6 80751 5.70 
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Appendix 4: Determination of Thrust Coefficient  
  

Air screw geometry 
(𝑹, 𝑪) 

Aircrew Angles 
(𝜽, 𝝓) 

Angular 
velocity (ω) 

Gradient of 
lift-curve (a) 

Thrust 
Coefficient (𝒄𝑻) 

/𝒎 /𝒓𝒂𝒅 /𝒓𝒂𝒅𝒔−𝟏 - - 

± 0.00500, ±0.00500 ±0.00900, ±0.00900 - - 68.40% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0900, 0.0180 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.157, 0.0650 

0 0.00 0.00000 

26 1.47 0.00359 

52 1.28 0.00313 

79 1.23 0.00301 

105 1.22 0.00299 

131 1.23 0.00301 

157 1.25 0.00305 

183 3.06 0.00747 

209 4.28 0.01044 

236 5.14 0.01253 

262 6.14 0.01497 

288 7.13 0.01738 

314 7.66 0.01870 

340 7.60 0.01854 

367 7.26 0.01772 

393 6.84 0.01670 

419 6.51 0.01588 

445 6.02 0.01470 

471 5.69 0.01387 

497 5.42 0.01321 

524 5.27 0.01287 

550 5.25 0.01281 

576 5.26 0.01284 

602 5.36 0.01308 

628 5.44 0.01327 

654 5.52 0.01347 

681 5.62 0.01371 

707 5.70 0.01391 

733 5.82 0.01420 
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Appendix 5: Determination of Drag Coefficient 
  

Angular 
velocity (ω) 

Tangential 
velocity (ωR) 

Reynolds 
Number (Re) 

Lift-curve 
gradient (a) 

Drag 
coefficient (𝒄𝑫) 

/𝒓𝒂𝒅𝒔−𝟏 /𝒎𝒔−𝟏 - - - 
0 0.0 0 0.00 0.0000 
26 2.4 2991 1.47 0.0933 
52 4.7 5982 1.28 0.0756 
79 7.1 8972 1.23 0.0683 

105 9.4 11963 1.22 0.0642 
131 11.8 14954 1.23 0.0616 
157 14.1 17945 1.25 0.0598 
183 16.5 20935 3.06 0.0664 
209 18.8 23926 4.28 0.0658 
236 21.2 26917 5.14 0.0623 
262 23.6 29908 6.14 0.0568 
288 25.9 32899 7.13 0.0490 
314 28.3 35889 7.66 0.0421 
340 30.6 38880 7.60 0.0376 
367 33.0 41871 7.26 0.0345 
393 35.3 44862 6.84 0.0321 
419 37.7 47853 6.51 0.0302 
445 40.1 50843 6.02 0.0289 
471 42.4 53834 5.69 0.0275 
497 44.8 56825 5.42 0.0266 
524 47.1 59816 5.27 0.0256 
550 49.5 62806 5.25 0.0249 
576 51.8 65797 5.26 0.0241 
602 54.2 68788 5.36 0.0235 
628 56.5 71779 5.44 0.0229 
654 58.9 74770 5.52 0.0224 
681 61.3 77760 5.62 0.0219 
707 63.6 80751 5.70 0.0215 
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Appendix 6: Determination of Power Coefficient 
  

Angular 
velocity (ω) 

Power 
coefficient (𝒄𝑷) 

Absolute 
uncertainty 𝚫𝒄𝑷 

/𝒓𝒂𝒅𝒔−𝟏 - - 
0 0 0 
26 0.00172 0.001209 
52 0.00141 0.001001 
79 0.00128 0.000921 

105 0.00122 0.000881 
131 0.00118 0.000860 
157 0.00115 0.000847 
183 0.00154 0.001328 
209 0.00173 0.001605 
236 0.00181 0.001772 
262 0.00188 0.001954 
288 0.00191 0.002111 
314 0.00188 0.002172 
340 0.00180 0.002116 
367 0.00170 0.002008 
393 0.00160 0.001889 
419 0.00151 0.001793 
445 0.00142 0.001668 
471 0.00134 0.001576 
497 0.00128 0.001505 
524 0.00124 0.001463 
550 0.00123 0.001451 
576 0.00122 0.001447 
602 0.00122 0.001464 
628 0.00123 0.001476 
654 0.00123 0.001491 
681 0.00124 0.001510 
707 0.00125 0.001524 
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Appendix 7: Raw Experimental Data  
 

  
# 2875 < rpm 

≤ 3125 
Power 3125 < rpm 

≤ 3375 
Power 3375 < rpm 

≤ 3625 
Power 3625 < rpm 

≤ 3875 
Power 

1 3017 2.9 3267 3.2 3417 3.3 3736 4.2 
2 3017 3.1 3269 3.3 3434 3.5 3737 4.3 
3 3018 3.0 3269 3.3 3436 3.1 3738 4.4 
4 3019 3.3 3270 3.3 3445 3.5 3739 4.2 
5 3020 3.1 3271 3.4 3447 3.8 3740 4.3 
6 3022 2.7 3271 3.3 3450 3.8 3740 4.3 
7 3022 2.8 3272 3.4 3453 3.5 3742 4.4 
8 3023 2.9 3272 3.4 3453 3.7 3742 4.3 
9 3029 2.8 3272 3.3 3459 3.7 3743 4.3 
10 3030 2.8 3273 3.1 3460 3.7 3753 4.2 
11 3039 3.2 3275 3.4 3461 3.6 3758 4.3 
12 3040 3.2 3276 3.4 3462 3.8 3759 4.1 
13 3042 2.4 3277 3.4 3464 3.6 3760 4.3 
14 3042 3.0 3278 3.3 3472 3.3 3761 4.2 
15 3043 2.7 3282 3.3 3474 3.8 3761 4.2 
16 3043 2.7 3292 3.6 3478 4.0 3761 4.2 
17 3044 2.4 3296 3.4 3496 3.8 3762 4.2 
18 3044 2.8 3298 3.3 3500 3.3 3764 4.4 
19 3044 2.6 3298 3.6 3516 3.7 3765 4.2 
20 3045 2.4 3299 3.4 3517 3.4 3765 4.2 
21 3045 2.8 3300 3.4 3518 3.8 3766 4.3 
22 -  - - 3536 3.6 3767 4.2 
23 - - - - 3538 3.6 3768 4.3 
24 - - - - 3540 3.8 3773 4.4 
25 - - - - 3541 3.8 3851 4.5 
26 - - - - 3546 3.8 3854 4.3 
27 - - - - 3547 3.7 3855 4.3 
28 - - - - 3548 3.7 3855 4.4 
29 - - - - 3548 3.7 3856 4.4 
30 - - - - 3548 3.8 3857 4.4 
31 - - - - 3549 3.8 3863 4.4 
32 - - - - 3549 3.9 3864 4.4 
33 - - - - 3550 3.8 3866 4.4 
34 - - - - 3552 3.8 3867 4.4 
35 - - - - 3553 3.6 3867 4.4 
36 - - - - 3556 3.8 3875 4.4 
37 - - - - 3559 3.8 - - 
38 - - - - 3567 3.8 - - 
39 - - - - 3575 3.9 - - 
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# 3875 < rpm 
≤ 4125 

Power 4125 < rpm 
≤ 4375 

Power 4375 < rpm 
≤ 4625 

Power 4625 < rpm 
≤ 4875 

Power 

1 3964 4.9 4141 5.5 4478 5.6 4699 6.4 
2 3965 4.9 4157 5.2 4479 5.7 4705 6.5 
3 3966 4.8 4161 5.3 4482 5.6 4708 6.2 
4 3971 4.9 4165 5.4 4484 5.7 4708 6.2 
5 3973 5.2 4165 5.4 4485 5.8 4709 6.4 
6 3973 4.9 4167 5.2 4485 5.6 4710 6.5 
7 3974 4.9 4167 5.5 4486 5.6 4711 6.5 
8 3974 4.9 4169 5.2 4486 5.5 4712 6.4 
9 3975 4.9 4169 5.3 4488 5.6 4712 6.5 
10 3975 5.1 4259 5.3 4488 5.5 4713 6.0 
11 3975 5.1 4261 5.1 4489 5.5 4713 6.5 
12 3977 4.7 4262 4.9 4489 5.7 4714 6.5 
13 3977 4.8 4263 5.5 4490 5.6 4714 6.0 
14 3978 4.9 4263 5.5 4494 5.6 4715 6.2 
15 3978 4.8 4263 5.4 4535 6.3 4716 6.5 
16 3978 4.8 4264 5.4 4537 6.0 4716 6.4 
17 3979 4.9 4264 5.5 4539 6.3 4717 6.5 
18 3980 4.9 4264 5.5 4541 6.0 4719 6.6 
19 3980 4.9 4264 5.3 4541 5.7 4719 6.5 
20 3981 5.1 4264 5.3 4546 6.0 4720 6.0 
21 3981 4.7 4265 5.4 4547 5.9 4720 6.4 
22 3981 5.0 4265 5.2 4547 5.8 4721 6.5 
23 3983 4.8 4265 5.2 4548 6.3 4723 6.0 
24 3984 4.8 4266 5.5 4549 6.3 4724 5.9 
25 3984 4.8 4266 5.6 4550 6.1 4725 6.2 
26 4024 4.8 4266 5.4 4551 6.3 4726 6.0 
27 4031 4.9 4266 5.5 4551 5.9 4728 6.0 
28 4032 4.9 4267 5.6 4552 6.0 4729 6.0 
29 4037 4.8 4267 5.8 4552 5.8 4731 6.1 
30 4038 4.9 4267 5.4 4554 6.0 4732 6.4 
31 4038 4.9 4269 5.2 4555 6.3 4732 6.5 
32 4043 4.8 4270 5.7 4555 5.9 4734 6.0 
33 4044 4.9 4271 5.6 4556 6.0 4735 6.2 
34 4045 4.8 4271 5.5 4556 5.9 4862 6.6 
35 4045 5.1 4271 5.2 4557 5.9 4864 6.8 
36 4047 4.8 4274 5.3 4557 5.9 4866 6.6 
37 4047 4.9 - - 4558 6.0 4872 6.8 
38 4048 5.0 - - 4558 5.9 4873 6.6 
39 4048 4.8 - - 4559 6.0 4874 6.5 
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40 4048 4.7 - - 4559 5.8 4875 6.7 
41 4049 4.8 - - 4559 5.6 - - 
42 4050 5.0 - - 4561 5.9 - - 
43 4051 4.9 - - 4561 5.7 - - 
44 4053 5.1 - - 4561 5.8 - - 
45 4054 5.0 - - 4561 5.9 - - 
46 4055 4.9 - - 4562 6.2 - - 
47 4056 4.8 - - 4562 5.9 - - 
48 4063 4.8 - - 4562 5.9 - - 
49 - - - - 4563 5.8 - - 
50 - - - - 4563 6.0 - - 
51 - - - - 4563 5.7 - - 
52 - - - - 4564 6.0 - - 
53 - - - - 4565 6.2 - - 
54 - - - - 4565 6.0 - - 
55 - - - - 4565 5.8 - - 
56 - - - - 4565 5.9 - - 
57 - - - - 4565 5.8 - - 
58 - - - - 4565 6.0 - - 
59 - - - - 4566 6.0 - - 
60 - - - - 4566 6.0 - - 
61 - - - - 4566 5.9 - - 
62 - - - - 4566 5.7 - - 
63 - - - - 4566 5.9 - - 
64 - - - - 4567 5.8 - - 
65 - - - - 4571 6.0 - - 
66 - - - - 4572 5.8 - - 
67 - - - - 4574 5.7 - - 
68 - - - - 4580 5.9 - - 
# 4875 < rpm 

≤ 5125 
Power 5125 < rpm 

≤ 5375 
Pow

er 
5375 < rpm 

≤ 5625 
Power 5625 < rpm 

≤ 5875 
Power 

1 4864 6.3 5126 7.3 5417 8.5 5680 9.4 
2 4869 6.5 5127 7.2 5418 8.3 5681 9.3 
3 4873 6.1 5127 7.2 5419 8.9 5682 9.7 
4 4876 6.5 5176 7.5 5419 7.8 5682 9.3 
5 4878 6.6 5177 7.4 5422 8.2 5685 9.4 
6 4880 6.7 5179 7.5 5428 7.0 5689 9.5 
7 4881 6.8 5180 7.5 5520 8.6 5687 9.2 
8 4882 6.7 5180 7.0 5529 8.4 5691 9.5 
9 4882 6.5 5181 7.3 5531 8.8 5698 9.3 
10 4884 6.6 5182 7.4 5569 9.0 5699 9.5 
11 4886 6.7 5184 7.4 5571 8.5 5676 9.1 
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12 4886 6.5 5185 7.1 5572 9.1 5679 9.5 
13 4886 6.6 5185 7.4 5575 8.8 5682 8.5 
14 4887 6.3 5187 7.4 5576 9.1 5681 11.0 
15 4888 6.7 5232 7.8 5576 8.6 5680 7.9 
16 4901 6.8 5233 7.6 5577 9.1 5679 8.5 
17 4926 6.6 5236 7.6 5578 8.3 5683 8.0 
18 4929 6.4 5236 7.9 5578 9.0 5684 8.9 
19 4960 6.4 5237 7.7 5580 8.8 5685 9.3 
20 4975 6.5 5237 7.8 5591 8.8 5686 9.5 
21 4983 6.6 5238 7.6 5591 9.0 5692 10.1 
22 4983 6.8 5238 7.9 5595 9.0 5690 9.7 
23 4983 6.5 5239 7.6 5595 8.8 5691 9.1 
24 4984 7.0 5240 7.7 5595 9.0 5695 8.5 
25 4984 7.0 5242 7.6 5596 8.5 5696 8.5 
26 4986 6.7 5247 7.8 5609 8.8 5699 9.6 
27 4986 6.9 5248 7.7 5614 8.9 5701 9.1 
28 4987 6.6 5248 7.6 5616 8.8 5703 9.3 
29 4993 7.0 5249 7.7 - - 5703 9.7 
30 4993 6.8 5250 7.7 - - 5768 10.4 
31 4994 6.9 5251 7.6 - - 5774 9.6 
32 4998 6.8 5254 7.9 - - 5789 10.0 
33 4998 6.8 5254 8.2 - - 5791 9.3 
34 4999 6.7 5254 7.7 - - 5795 9.1 
35 5061 7.1 5254 7.6 - - 5793 9.6 
36 5062 6.8 5255 7.3 - - 5796 10.0 
37 5063 6.9 5256 7.8 - - 5797 10.2 
38 5066 6.8 5257 7.8 - - 5801 9.3 
39 5068 7.2 5257 7.7 - - 5806 9.0 
40 5070 7.1 5258 7.7 - - 5810 8.5 
41 5074 6.9 5258 7.3 - - 5812 8.5 
42 5079 7.0 5261 7.4 - - 5811 10.5 
43 5080 6.8 5262 7.8 - - 5817 9.2 
44 5085 7.1 5267 7.8 - - 5815 8.7 
45 5086 7.1 5268 7.6 - - 5814 9.5 
46 5088 6.9 5269 7.7 - - 5821 8.5 
47 5090 6.7 5269 7.6 - - 5751 8.9 
48 5091 7.1 5270 7.6 - - 5753 9.7 
49 5092 6.9 5273 7.5 - - 5750 9.4 
50 5096 7.1 5274 7.6 - - 5749 9.1 
51 5097 7.1 5275 8.1 - - 5741 9.0 
52 5099 7.0 5276 7.6 - - 5746 9.0 
53 5100 7.2 5276 7.9 - - 5745 8.9 
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54 5101 7.0 5277 7.6 - - 5754 9.5 
55 5103 7.0 5279 7.7 - - 5753 9.3 
56 5107 7.3 5342 8.2 - - 5747 9.1 
57 5108 7.4 5343 8.0 - - 5741 8.7 
58 5108 7.1 5349 7.9 - - 5740 9.4 
59 5121 7.2 5351 7.8 - - 5742 9.1 
60 5122 7.2 5353 8.0 - - 5741 9.1 
61 5122 7.4 5354 8.2 - - 5740 9.3 
62 5123 7.2 5359 7.9 - - 5737 9.1 
63 5124 7.2 5361 7.9 - - 5738 9.1 
64 5124 7.3 5362 7.9 - - 5736 8.9 
65 - - - - - - 5732 9.1 

 

 

  

# 5875 < rpm ≤ 6125 Power 6125 < rpm ≤ 6375 Power 6375 < rpm ≤ 6625 Power 
1 5890 9.3 6126 10.5 6419 11.1 
2 5893 9.5 6128 10.3 6466 12.1 
3 5923 9.6 6129 10.5 6472 11.4 
4 5928 9.5 6130 10.3 6473 11.1 
5 5929 9.6 6136 10.5 6479 11.5 
6 5930 9.6 6140 10.1 6483 11.7 
7 5931 9.9 6144 10.1 6500 11.5 
8 5932 9.6 6151 10.0 6511 11.9 
9 5933 10.1 6153 10.5 6521 11.4 
10 5933 9.9 6156 10.4 6529 12.3 
11 5935 9.7 6210 10.5 6532 11.7 
12 5937 9.6 6210 10.2 6542 12.1 
13 5937 9.5 6211 10.5 6543 11.6 
14 5937 9.7 6212 10.5 - - 
15 5938 9.4 6215 11.5 - - 
16 5939 9.4 6216 10.8 - - 
17 5939 9.8 6218 11.3 - - 
18 5939 9.2 6218 11.5 - - 
19 5940 9.9 6218 10.4 - - 
20 5940 9.6 6219 10.9 - - 
21 5941 9.7 6219 11.5 - - 
22 5942 10.7 6219 10.5 - - 
23 5942 10.1 6222 10.3 - - 
24 6008 10.4 6223 11.0 - - 
25 6009 10.9 6225 11.1 - - 
26 6009 10.3 6225 11.0 - - 
27 6010 10.8 6226 9.2 - - 
28 6010 9.6 6226 10.7 - - 
29 6011 9.6 6227 10.9 - - 
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30 6011 9.9 6229 10.9 - - 
31 6012 9.7 6229 10.7 - - 
32 6013 10.2 6230 11.3 - - 
33 6014 10.5 6230 11.7 - - 
34 6014 10.2 6230 11.8 - - 
35 6014 9.8 6230 10.9 - - 
36 6015 10.2 6230 10.5 - - 
37 6016 9.9 6230 10.3 - - 
38 6017 9.8 6231 11.3 - - 
39 6017 10.5 6232 12.7 - - 
40 6032 10.0 6233 11.2 - - 
41 6036 9.6 6233 11.3 - - 
42 6039 10.7 6233 10.6 - - 
43 6042 9.6 6234 12.4 - - 
44 6042 11.0 6237 10.1 - - 
45 6043 10.5 6240 10.8 - - 
46 6046 10.2 6242 11.3 - - 
47 6046 9.7 6243 10.2 - - 
48 6048 9.9 6244 11.2 - - 
49 6049 10.5 6246 10.2 - - 
50 6049 10.4 6263 10.7 - - 
51 6050 9.9 6266 11.2 - - 
52 6051 10.8 6274 10.8 - - 
53 6051 9.7 6277 10.2 - - 
54 6052 10.2 6278 11.0 - - 
55 6052 10.4 6280 11.8 - - 
56 6052 10.1 6285 10.7 - - 
57 6052 10.5 6290 11.2 - - 
58 6052 10.3 6291 11.2 - - 
59 6053 10.9 6293 10.7 - - 
60 6053 10.0 6294 11.0 - - 
61 6054 10.6 6295 10.7 - - 
62 6054 10.5 6297 11.1 - - 
63 6055 10.4 6297 11.9 - - 
64 6055 11.0 6298 11.2 - - 
65 6056 10.5 6362 11.2 - - 
66 6057 10.3 6367 10.7 - - 
67 6058 10.8 6367 10.7 - - 
68 6059 10.2 6368 11.5 - - 
69 6059 10.6 - - - - 
70 6059 10.4 - - - - 
71 6060 10.4 - - - - 
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72 6062 10.5 - - - - 
73 6062 10.5 - - - - 
74 6065 10.6 - - - - 
75 6066 9.5 - - - - 
76 6070 10.8 - - - - 
77 6071 10.5 - - - - 
78 6073 9.9 - - - - 
79 6075 9.6 - - - - 
80 6080 9.8 - - - - 
81 6081 9.9 - - - - 
82 6083 10.8 - - - - 
83 6083 10.0 - - - - 
84 6084 9.8 - - - - 
85 6085 10.2 - - - - 
86 6087 10.2 - - - - 
87 6093 10.6 - - - - 
88 6096 10.2 - - - - 
89 6097 10.2 - - - - 
90 6097 10.2 - - - - 
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Appendix 8: Determination of Power Efficiency  
  Angular 

velocity (ω) 
Power 

Efficiency (η) 
Fractional 

uncertainty (𝚫𝛈
) 

𝛈 

Absolute 
uncertainty (∆𝜼) 

/𝒓𝒂𝒅𝒔−𝟏 𝒌𝒈𝒎𝟐𝒔−𝟑 - 𝒌𝒈𝒎𝟐𝒔−𝟑 

0 0 1.090 0 
26 5.05041 1.492 7.53647 
52 5.03806 1.497 7.54115 
79 5.19595 1.501 7.79749 

105 5.41957 1.504 8.15253 
131 5.66842 1.508 8.54589 
157 5.90947 1.511 8.92700 
183 16.9106 1.582 26.7590 
209 24.9627 1.622 40.4835 
236 31.3804 1.651 51.8054 
262 39.4344 1.685 66.4387 
288 48.5075 1.722 83.5170 
314 54.8055 1.748 95.8195 
340 56.5343 1.760 99.5000 
367 56.0104 1.765 98.8327 
393 54.6171 1.766 96.4554 
419 53.4560 1.767 94.4715 
445 50.8639 1.764 89.7014 
471 49.2979 1.763 86.8983 
497 47.8633 1.761 84.2870 
524 47.4140 1.762 83.5577 
550 47.6857 1.765 84.1640 
576 48.2416 1.769 85.3168 
602 49.3993 1.774 87.6109 
628 50.3016 1.777 89.4075 
655 51.2764 1.782 91.3497 
681 52.3214 1.786 93.4234 
707 53.1726 1.789 95.1214 
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Appendix 9: Arduino Code for Modulating Motor RPM  
 

Int VoltPin = A0; int 

SignalPin = 9; int readVal; 

float Volt; 

#include <Servo.h> Servo 

ESC; 

 
void setup() 

{ ESC.attach(9,1000,2000); 

Serial.begin(9600); 

} 

void loop() { 

realVal = analogRead(VoltPin); realVal = 

map(realVal, 0, 1023, 0 180); ESC.write(realVal); 

} 
 

 

 

 



【評語】100042 

The author studied the relationship between the angular 

velocity and power efficiency of a twin-blade helicopter during 

hovering. The issue is properly addressed and proper analysis 

methodology is carried out for the modeling and simulation of 

the problem based on empirical data. However, the additional 

issues about the relationship between the thrust or the blade 

angle vs. the power efficiency still required further study. It is 

suggested that the additional issues should be taken into account 

so as to improve the project. 

C:\Users\cutes\OneDrive\Documents\國際科展_2022\排版\100042-評語 


	100042-封面
	100042-作者照片
	100042-本文
	1.0 Introduction
	2.0 Background Information
	3.0 Extending Power Efficiency
	5.0 Determining Thrust Coefficient
	6.0 Determining Power Coefficient
	7.0 Determining Experimental Power Coefficient
	8.0 Determining Power Efficiency
	9.0 Evaluation and Conclusion
	10.0 Works Cited
	Appendix 1: Simplifying Reynolds Number
	Appendix 2: Conversion between Angular Velocity and Reynolds Number
	Appendix 3: Determination of Lift-curve Gradient
	Appendix 4: Determination of Thrust Coefficient
	Appendix 5: Determination of Drag Coefficient
	Appendix 6: Determination of Power Coefficient
	Appendix 7: Raw Experimental Data
	Appendix 8: Determination of Power Efficiency
	Appendix 9: Arduino Code for Modulating Motor RPM

	100042-評語

