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Abstract 

 

Double Parallelogram Lifting Mechanism (DPLM) is a compact and stable lifting mechanism 

with a large extension range widely adopted in robot designs. Rubber bands and springs are 

often installed on the DPLM to lighten the motors' load and maintain its height, yet the 

installation positions are often obtained through trial and error. This project aims at finding 

the optimal rubber band installation positions for DPLM using modeling and optimization 

techniques. 

  

A mathematical model which describes the forces and moments acting on all the linkages of 

DPLM was derived based on the conditions for the static equilibrium and verified with a 3D 

simulation software. A genetic algorithm (GA) was implemented to optimize rubber band 

installation positions, which managed to find solutions with the overall root-mean-square-

error (RMSE) of the net moment less than 2 for 2 to 6 rubber bands. A further statistical 

analysis of 50000 random rubber band samples showed that installing rubber bands in 

triangles is the best solution with the overall lowest RMSE. A test was conducted with a 

prototype of the DPLＭ and the results were consistent with our model and optimization. 

  

This project derived and verified a mathematical model for the DPLM, and found the optimal 

way and positions to install rubber bands. The results of this project provides a theoretical 

basis for controlling DPLM with rubber bands, allowing it to be further adopted in industrial 

robots that require repetitive lifting and lowering such as inspection robots and aerial work 

platforms. 
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1.  Introduction 

Double Parallelogram Mechanism (DPM) is a compact and stable multi-linkage mechanism. 

This mechanism is widely adopted in both heavy-load and light-load situations because of its 

light weight and its large range of extension. Heavy-load applications of DPM mainly include 

lifting mechanisms and aerial work platforms [1], in which each parallelogram is driven 

independently by a hydraulic cylinder in the lifting process. DPM is also used in forklifts[2] in 

which it is driven by only one hydraulic cylinder, moving both parallelograms simultaneously. 

This mechanism is also used in the design of stack parking systems, in which the whole 

mechanism can be driven by a single motor to realize three motion periods, including lifting, 

translation, and fillet transition of vehicles[3]. 

Applications of DPM in light-load situations include Remote Center of Motion (RCM) 

Mechanisms for surgical operations[4], exoskeletons[5][6], and force-reflective robots[7]. 

Some novel studies also investigated the kinetic energy transmitted through small deformations 

of DPM.[8][9] 

In this paper, a robot is designed with DPM as its lifting mechanism (Figure 1). Therefore, 

this mechanism will be called a Double Parallelogram Lifting Mechanism (DPLM) in the rest 

of this paper. The DPLM enables the robot to elevate along a substantially vertical path at a  

high speed only with a single motor installed on the mechanism, while having a great working 

height without increasing the retracted height. The load platform of the DPLM is maintained 

horizontal throughout the whole lifting process, making it desirable to be used as a platform for 

inspection purposes. For example, when the lifting apparatus is used in inspecting large vehicles, 

such as aircraft and water vessels, inspection devices can be installed on the load platform.[10]  

 

Figure 1. The designed robot with a DPLM as its lifting mechanism. 

Double Parallelogram Lifting Mechanism (DPLM) is composed of two four-bar linkages 

connected with a pair of meshing gears, which enable the two linkages to elevate 

simultaneously at high speed with only one drive motor. However, if the motion of the whole 

DPLM depends on only one motor, a motor with very high power will be needed, which will 

highly increase the weight and the cost of the DPLM. In addition, the motor is also more prone 

to overloading and fatigue in such a situation. Therefore, in order to reduce the load of the drive 

motor, Rubber bands, and other elastic materials, are often installed on the parallelogram pair 

to resist the gravitational moment due to the weight of the DPLM. 

However, the optimal installation positions and the parameters of the Rubber bands are 

currently obtained through testings. Therefore, in this paper, the method of using the elastic 
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force of Rubber band to maintain DPLM in static equilibrium at any height is studied. 

Numerical simulation is used in optimizing the parameters of Rubber band as well as their 

installation positions. 

2.   Objectives  

The objectives of this section are as following: 

1. Model DPLM with math equations, 

2. Verify that the model is correct, 

3. Optimize the installation positions and the parameters of the elastic material with 

given apparatus parameters (length and mass of linkages) 

4. Find a way to minimize parameter changes when the load on the apparatus changes. 

3.  Description of DPLM 

DPLM, as shown in Figure 2 and Figure 3, is composed of the lower four-bar linkage 𝑂3𝑂3
′ 𝑂4

′𝑂4 

and the upper four-bar linkage 𝑂1 𝑂2 𝑂2
′ 𝑂1

′ . The lower four-bar linkage is fixed to the base 

through the hinge at  𝑂4
′ , while the upper four-bar linkage is connected to the lower four-bar 

linkage through a pair of meshing gears. Since the upper and lower parallelograms can move 

simultaneously, the drive actuator can be installed at any hinge of 𝑂1 , 𝑂2 , 𝑂3 , 𝑂4 , 𝑂3
′ , 𝑂4

′ . 

𝑃1 𝑃2 and 𝑃3 𝑃4 are Rubber bands installed on the upper or lower four-bar linkage to resist 

the gravitational moment. The Rubber bands can be ordinary springs, rubber bands, or gas 

springs. 

 

4.  Calculation model 

A coordinate system is established with 𝑂4
′  as the origin as shown in Figure 2 and Figure 3. The 

angle between the linkage 𝑂4𝑂4
′  and the negative X-axis is θ. 

  
Figure 2. DPLM with a positive rotation 

angle(θ) 

Figure 3. DPLM with a negative rotation 

angle(θ) 
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4.1.  Naming 

• Centroids:  

o m (e.g. 𝑚𝑂1𝑂2
 represents the mass of the linkage 𝑂1𝑂2) 

• Forces: 

o H (e.g. 𝐻𝑂1
 represents the horizontal force at pivot 𝑂1)  

o  V (e.g. 𝑉𝑂1
 represents the vertical force at pivot 𝑂1) 

o  𝑓 (e.g. 𝑓1 represents the tension exerted by a spring) 

• Length:  

o L (e.g. 𝐿𝑂1𝑂2
 represents the length of linkage 𝑂1𝑂2) 

o 𝑋 (e.g. 𝑋𝑂1𝑂1
′  represents the horizontal distance between the centroid of linkage 

𝑂1𝑂1
′  and its rotational axis) 

4.2.  Force analysis 

Each part of DPLM is analyzed separately, and an equation describing all the factors involved 

in moment balancing is established at the end according to the principles of theoretical 

mechanics.[11] 

The free body diagrams(FBD) of all linkages in the DPLM are shown below in Figure 4 to 

9: 

 

Figure 4. FBD of linkage O1
' O2

'
. 

 

Figure 5. FBD of linkage 𝑂2𝑂4. 

 

Figure 6. FBD of linkage 𝑂1𝑂1
′ . 

 

Figure 7. FBD of linkage 𝑂2𝑂2
′ . 
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Figure 8. FBD of linkage 𝑂3𝑂3
′ . Figure 9. FBD of linkage 𝑂4𝑂4

′ . 

 

4.2.1.  Linkage O1
' O2

'  

By the conditions for equilibrium of rigid bodies, as shown in Figure 4, three balance equations 

(1)(2)(3) are established. 
∑ Hx =H

O1
' -H

O2
' =0               (1) 

 ∑ Vy =V
O1

' -G
O1

'
O2

' -V
O2

' =0    (2) 

 ∑ M
O2

' =H
O1

' ⋅L
O1

'
O2

' -G
O1

'
O2

' ⋅X
O1

'
O2

'          (3) 

The expressions of H
O1

'  and H
O2

'  are derived as in formula (4) by substituting formula (3) 

into formula (1). 
G

O1
'

O2
' ⋅X

O1
'

O2
'

L
O1

'
O2

'
=H

O1
' =H

O2
'          (4) 

4.2.2.  Linkage O2O2
'  

By the conditions for equilibrium of rigid bodies, as shown in Figure 7, three balance equations 

(5)(6)(7) are derived. 
∑ Vy =VO2

+V
O2

' -f
1
⋅ sin(φ-θ) -G

O2O2
' =0      (5) 

∑ 𝐻𝑂2
=-𝑓1 ⋅ 𝑐𝑜𝑠(𝜑 − 𝜃) − 𝐻𝑂2

′     (6) 

∑ 𝑀𝑂2
=-f

1
⋅LO2F2

-G
O2O2

' ⋅X
O2O2

' ⋅ cos θ -H
O2

' ⋅L
O2O2

' ⋅ sin θ +V
O2

' ⋅L
O2O2

' ⋅ cos θ =0                 (7) 

4.2.3.  Linkage O1 O1
'  

By the conditions for equilibrium of rigid bodies, as shown in Figure 6, three balance equations 

(8)(9)(10) are derived. 
∑ Vy =VO1

-V
O1

' +f
1
⋅ sin(φ-θ) -G

O1O1
' =0      (8) 

∑ HO1
=f

1
⋅ cos(φ-θ) +H

O1
'             (9) 

∑ 𝑀𝑂1
=f

1
⋅LO1F1

-G
O1O1

' ⋅X
O1O1

' ⋅ cos θ +H
O1

' ⋅L
O1O1

' ⋅ sin θ -V
O1

' ⋅L
O1O1

' ⋅ cos θ -Mc=0     (10) 

4.2.4.  Linkage O2 O4  

By the conditions for equilibrium of rigid bodies, as shown in Figure 5, two balance equations 

(11)(12) are derived. 
∑ Hx =-HO1

-HO2
+H

O3
+H

O4
=0    (11) 

∑ Vy =-VO1
-VO2

-G
O2O4

-V
O3

-V
O4

=0    (12) 

4.2.5.  Linkage O3 O3
'  

By the conditions for equilibrium of rigid bodies, as shown in Figure 8, a balance equation (13) 

is derived. 
∑ M

O3
' =f

2
⋅L

O3
'
F3

' +G
O3

'
O3

⋅ X
O3O3

' ⋅ cos θ +H
O3

⋅L
O3

'
O3

⋅ sin θ -V
O3

⋅L
O3

'
O3

⋅ cos θ -Mc=0     

(13) 

4.2.6.  Linkage 𝑂4 𝑂4
′  
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By the conditions for equilibrium of rigid bodies, as shown in Figure 9, a balance equation 

(14) is derived. 
∑ M

O4
' =-f

2
⋅L

O4
'
F4

' +G
O4

'
O4

⋅X
O4O4

' ⋅ cos θ +H
O4

⋅L
O4

'
O4

⋅ sin θ -V
O4

⋅L
O4

'
O4

⋅ cos θ +Md=0  (14) 

The 𝑀𝑑  in formula (14) is the moment exerted by the actuator, which is zero when the 

actuator is not in use. 

4.2.7.  Finding tensions 

In order to obtain the relation between tension 𝑓1 and 𝑓2 , by adding formula (7) and formula 

(13), then substituting formula (4) into the equation, we further derive formula (15): 

f
1
⋅(LO1F1

-LO2F2
)-G

O2O2
' ⋅X

O2O2
' -G

O1O1
' ⋅X

O1O1
' + (H

O1
' -H

O2
' ) ⋅L

O2O2
' ⋅sinθ+ (V

O2
' -V

O1
' ) ⋅L

O1O1
' ⋅ cos θ 

 -Mc=0 

f
1
⋅(LO1F1

-LO2F2
)-G

O2O2
' ⋅X

O2O2
' -G

O1O1
' ⋅X

O1O1
' -G

O1
'
O2

' ⋅L
O1O1

' ⋅ cos θ -Mc=0  (15) 

By adding formula (10) and formula (14) we obtain the temporary equation below： 

f
2
⋅L

O3
'
F3

' -f
2
⋅L

O4
'
F4

' +G
O3

'
O3

⋅X
O3O3

' ⋅ cos θ+G
O4

'
O4

⋅X
O4O4

' ⋅ cos θ +(H
O3

+H
O4

)⋅L
O3

'
O3

⋅ sin θ 

 - (V
O3  

+V
O4  

) ⋅L
O3

'
O3

⋅cosθ-Mc+Md=0 

Then by substituting formulae (5)(6)(8)(9)(11) into the temporary equation, after further 

simplifications we obtain formula (16)： 

f
2
⋅ (L

O3
'
F3

' -

L
O4

'
F4

' ) +G
O3

'
O3

⋅X
O3O3

' +G
O4

'
O4

⋅X
O4O4

' + (G
O1

'
O2

' +G
O2O2

' +G
O1O1

' +G
O2O4

) ⋅L
O3

'
O3

⋅ cos θ 

      -Mc+Md=0         (16) 

4.2.8.  Establishing the relationship between f
1
 and f

2
 

Subtracting (15) from (16), MC will be eliminated and we obtain (17): 

f
1
⋅(LO1F1

-LO2F2
)+f

2
⋅ (L

O4
'
F4

' -L
O3

'
F3

' ) -G
O2O2

' ⋅X
O2O2

' -G
O1O1

' ⋅X
O1O1

' -G
O1

'
O2

' ⋅L
O1O1

' ⋅ cos θ -

G
O3

'
O3

⋅X
O3O3

'  

 -G
O4

'
O4

⋅X
O4O4

' - (G
O1

'
O2

' +G
O2O2

' +G
O1O1

' +G
O2O4

) ⋅L
O3

'
O3

⋅ cos θ +Md=0 

 (17) 

Notice that when tension 𝑓1 and 𝑓2 in formula (17) are substituted with arrays of tensions 

of multiple Rubber bands, the derivation of (17) isn’t affected. By this we obtain (18) : 

∑ f
1i

i

⋅ sin φ
i
⋅(LO1iP1i

-LO2iP2i
)+ ∑ f

2j
⋅sinφ

2j

j

⋅ (L
O4j

'
P4j

-L
O3j

'
P3j

) -G
O2O2

' ⋅X
O2O2

' G
O1O1

' ⋅X
O1O1

'  

 -G
O1

'
O2

' ⋅L
O1O1

' ⋅ cos θ -G
O3

'
O3    

⋅X
O3O3

' -G
O4

'
O4    

⋅X
O4O4

'  

 - (G
O1

'
O2

' +G
O2O2

' +G
O1O1

' +G
O2O4    

) ⋅L
O3

'
O3    

⋅ cos θ +Md=0   

  (18) 

The LO1iP1i
-LO2iP2i

 and L
O4j

'
P4j

-L
O3j

'
P3j

 in formula (18), which are the differences in the 

distances between the two installation points of a spring and their respective rotation axes, are 

named respectively 𝐷𝑖 and 𝐷𝑗. 

Formula (18) also suggests that the magnitude of the moment of the tension of a spring can 

be determined not only by its exact installation position but also by its 𝐷 value. The absence of 
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X
O1

'
O2

'  and X
O2O4

'  in formula (18) also suggests that the gravitational moment of the whole 

DPLM is independent of the position of the center of mass of linkages O1
' O2

'  and O2O4. 

5.  Model Verification 

Here the validity of the proposed model in (18) is checked by comparing  

1. the gravitational moment at 𝑂4
′  at any angle without installation of any Rubber band on 

the mechanism, and 

2. the tension required for equilibrium with different installation positions of spring at 

multiple angles 

obtained in the MATLAB model (Figure 11) with those obtained in experiments conducted 

with a virtual prototype in SOLIDWORKS (SW). 

A virtual prototype of DPLM, as shown in Figure 10, is set up in SW and the position of 

linkage 𝑂3
′ 𝑂4

′  is fixed. The parameters of the prototype are shown in Table 1.[12] 

 
Figure 10. A virtual prototype of DPLM in 

SW 

 

Figure 11. A MATLAB model of DPLM 

 

Linkage Length(mm) Mass(g) 

𝑂1𝑂1
′ , 𝑂2𝑂2

′  762 847.34661 

𝑂′1𝑂2
′  254 298.70661 

𝑂2𝑂4 615 679.04403 

𝑂3𝑂3
′ , 𝑂4𝑂4

′  648 724.22661 

Table 1.Parameters of the SW DPLM prototype. 

5.1.  Validating the moment at 𝑶𝟒
′   

An actuator is added at 𝑂4
′  in the SW virtual prototype and it is made to rotate at a constant 

angular velocity with 𝜃 within the range [-20,60], causing the whole mechanism to rise. Then, 

the moment exerted by the actuator with respect to 𝜃, which by formula (18) is equal to the sum 

of gravitational moment of all linkages, is exported from SW. This exported moment is 

compared with the gravitational moment calculated in MATLAB. 

The results of the SW simulation and MATLAB calculation are plotted in Figure 12, with 

the root-mean-square error(RMSE) between the two results being only 8.7051. This has shown 

that the MATLAB model (18) is completely in accordance with the SW simulation results 

Note that no Rubber band is installed on the DPLM in this simulation. 
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Figure 12. A comparison between the results of MATLAB and SW on the moment at 𝑂4
′ . 

 

5.2.  Validating the tension required for the DPLM prototype to obtain equilibrium with different 

installation positions of spring. 

To show that the tension part of the model (18) is in accordance with the SW simulation, 

multiple pairs of (𝐷, 𝜃)  are selected randomly and the respective tensions required for 

equilibrium are calculated in MATLAB. These forces are then used as anchor points in finding 

the force required for equilibrium in the SW simulation. The tested equilibrium point(at which 

the mechanism stays in equilibrium), the tested falling point(at which the mechanism falls), and 

the respective ranges of error between the MATLAB model and the SW simulation results are 

presented in Table 2. 

The table shows that the error between our MATLAB model and the SOLIDWORKS 

simulation is less than +0.4N under all tested (𝐷, 𝜃) pairs. 

The two experiments show that our model is in accordance with the SolidWorks simulation 

and is a legitimate approximation to the physical world. 
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D  θ Required 

force 

calculated in 

MATLAB 

model(N) 

Tested 

equilibrium 

point from 

SW(N) 

Tested 

falling 

point from 

SW(N) 

Range of error 

between 

MATLAB SW 

results (N) 

  
260 60 60.7905 60.70  60.68  [+0.0905,+0.1105] 

260 40 99.2001 99.05 99.02 [+0.1501,+0.1801] 

260 20 134.6107 134.37 134.35 [+0.2407,+0.2607] 

260 0 165.9367 165.70 165.60 [+0.2367,+0.3367] 

260 -20 192.2237 191.90 191.85 [+0.3237, +0.2237] 

100 60 207.3691 
207.37  207.36  [-0.0009,+0.0091] 

100 40 242.8567 
242.86  242.85 [-0.0033,+0.0067] 

100 20 283.7354 
283.74  283.73  [-0.0046,+0.0054] 

100 0 324.0134 
324.02  324.01  [-0.0066,+0.0034] 

100 -20 359.8104 359.82  359.81  [-0.0096,+0.0004] 

Table 2. Results from SW simulation 

 

 

6.  Optimization 

6.1.  Definition of fitness 

Before proceeding to any optimization processes, the fitness of our model must be defined. If 

we visualize the function we aim to minimize, the proper definition of fitness would become 

very intuitive: 

 

Figure 13. An example of  Moment Curve 

 

 

As in the figure above, the three red curves represent the moment produced by the three springs 

installed on the DPLM and the black curve represents the moment produced by its own weight. 

Subtracting the black curve from the sum of the red ones gives the blue curve, which is the net 

moment, the net tendency for the DPLM to rotate. Our aim, to achieve equilibrium across the 
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whole angle range, means making the blue curve as close to the horizontal zero as possible, so 

that the moment of springs completely cancels out the moment of weight. To quantify this goal, 

the root-mean-square error (RMSE) between the net moment and zero across the range of angles 

is adopted to be the estimate of how well the DPLM is balancing. That is, the fitness function 

of this problem is defined to be the RMSE. The smaller it is, the better: 

 
Therefore, the optimization goal is 

𝑚𝑖𝑛 (∑ f
1i

i

⋅ sin φ
i
⋅(LO1iP1i

-LO2iP2i
)+ ∑ f

2j
⋅sinφ

2j

j

⋅ (L
O4j

'
P4j

-L
O3j

'
P3j

) -

G
O2O2

' ⋅X
O2O2

' G
O1O1

' ⋅X
O1O1

' -G
O1

'
O2

' ⋅L
O1O1

' ⋅ cos θ -G
O3

'
O3    

⋅X
O3O3

' -G
O4

'
O4    

⋅X
O4O4

' -

(G
O1

'
O2

' +G
O2O2

' +G
O1O1

' +G
O2O4    

) ⋅L
O3

'
O3    

⋅ cos θ) 

6.2.  DPLM Model setup 

The parameters of the DPLM model used in the following optimization were obtained from a 

former FRC robot (about 2 meters tall) our school team had. The parameters are as follow: 

 

Figure 14. The Dimension of the DPLM on the FRC Robot 

The range of angle the optimization would apply to is  

The rubber bands on the DPLM are either installed linearly or in traingles, as shown in the 

figures below: 
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Figure 15. A Rubber Band installed linearly (left) 

 

Figure 16. A Rubber Band Installed in a Traingle (right) 

6.3.  Genetic algorithm 

After our setback in reinforcement learning, we continued to carry out our second plan, genetic 

algorithm (GA). We chose GA because of its effectiveness in tackling different problems and 

its ability to produce high-quality solutions consistently. An elitist genetic algorithm was used 

in the following optimization processes. The RMSE/fitness function was used as the objective 

function for the GA to minimize. The parameters of the GA are: 
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Figure 17. The Parameters of the Genetic Algorithm 

 

 

At first, we tried to only optimize the install position of the rubber bands as we did in the first 

greedy algorithm optimization. The genetic algorithm found the solution to be [ 0.  0.  0. 16.] 

with RMSE = 1.14, which is identical to the best result the greedy algorithm found. The time 

elapsed in one search is 280. This showed that although a longer time might be needed, the 

genetic algorithm was very effective in finding a decent, if not the best, solution to our problem. 

The followings are the original output result of the GA algorithm and the objective function 

curve.  

 

Figure 18. The GA Optimization Results and its Iteration Curve 

After successfully optimizing the install positions of rubber bands, we decided to optimize the 

other two parameters of the rubber bands, the length and the elastic constant. Three rubber 

bands were optimized and the searchable range of the parameters are: 

1. elastic constant: [200,400] 

2. length of rubber band: [0.2,0.4] 

3. Install position [-19, 19] 

The optimal solution is found to be the install position = [18, -2, -1], the length of the rubber 

bands = [0.2,0.36,0.32], and the elastic constant = [230,380,270] with RMSE = 1.58. The time 

elapsed in one search is 316 seconds. The followings are the original output result of the GA 

algorithm and the objective function curve.   
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Figure 19. The GA Optimization Results and its Iteration Curve 

We then tried to optimize all the parameters (18 in total) when 6 rubber bands installed with the 

same ranges of parameters. Results are: 

 

Figure 20. The GA Optimization Results and its Iteration Curve 

The result had showed that genetic algorithm continued to be effective even when the number 

of parameter increased and the time required for each calculation did not increase dramatically. 

Although the genetic algorithm managed to find reasonable solutions, it didn't produce a model 

that can predict optimal parameters for other situations. Therefore, in order to create such a 

model, we decided to use the solutions from the GA as the training set to train a neural network, 

so that the it could tell the optimal install position of rubber bands immediately when we gave 

it the number of rubber bands and the parameters of it. 

 

To train a network, the size of the training set had to be enormous. Therefore I started generating 

good solutions with the computers in our lab. The GA was instructed to generate solutions for 

random settings with the ranges below: 
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Figure 21. The GA Optimization Results and its Iteration Curve 

After generating solutions on 3 computers for 24 hours straight, I extracted the data and started 

examining. Solutions that didn't successfully optimize the install position of the rubber bands, 

that is, reduce the RMSE below a certain value, which was chosen to be 2 in our case, were 

discarded. The following table is a the first 15 successful solutions: 
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Figure 22. The Results of Fifteen Successful GA Optimization 
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From the above table, we observed that many rubber bands were installed very close to the 

upper limit 0.4 (red) and the center 0 (purple). This phenomenon is universal across different 

numbers of springs and spring parameters. To dig deeper into this phenomenon, we plotted the 

distribution of spring positions for different numbers of springs and further investigate. 

 

Figure 23. The Distribution of Spring Positions for 2 to 6 springs 

 

The graphs above showed the distribution of rubber bands install positions from 2 to 6 rubber 

bands. Each dot on the graph represents one spring that was installed on The x-axes of the 

graphs were the install position, which ranged from -0.4 to 0.4. The y-axes were the net RMSE 

of that moment of the rubber band without considering the moment of the weight. In other 

words, the y-axes represents the "rotational effect" the rubber band had on the DPLM. The color 

on the graphs represents the density of rubber bands according the the color bar in the bottom. 

 

When only two rubber bands were installed, a huge amount of rubber bands with high rotational 

effects (large y values) accumulated at the upper limit of install position, 0.4. This corresponds 

to rubber band 1 in the figure below. As the number of rubber bands increased, more rubber 

bands with a low negative rotational effect appeared on the left of the zero position, which 

corresponds to rubber band 2 in the figure below. When the number of rubber bands reached 

four and above, many rubber bands accumulated at the zero points, which corresponded to a 

vertically-installed rubber band such as rubber band 3. These rubber bands were completely 

redundant as they didn't produce any moment on the DPLM. In addition, the shapes of the 

figures were almost identical. This similarity between the shapes of the figures and the 

redundancy of rubber bands in the graphs prompted the possibility that any number of rubber 

bands on the DPLM could be replaced by only 2 or 3 of them while preserving almost the same 

effect on the DPLM if minimizing the overall RMSE was the objective. 
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Then we plotted the distribution of RMSE values for 2 to 6 rubber bands. The RMSE is the 

lowest when 2 rubber bands were installed and there was generally no difference between the 

distribution of 3 to 6 rubber bands. This observation not only provided evidence for our claim 

that the effect of 4 or more rubber bands could be achieved with just 2 or 3 of them but also 

suggested that installing 2 rubber bands could produce the best solutions. 

 

Figure 24. The RMSE Distribution for 2 to 6 springs 

We continued to test installing rubber bands in triangles. 
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Figure 25. The Distribution of Spring Positions and RMSE for Rubber Band Triangles 

 

The mean RMSE of rubber bands triangles is far lower than that of 2 rubber bands. This 

shows that a triangle is the optimal way to install rubber bands on DPLM. 

 

We went on to conduct an experiment with a phsical demo of the mechanism and the results 

were consistent with the opmization. 

6.4.  Summary of methodology 

In this project, a mathematical model that theoretically described all the forces and moments 

involved in the Double Parallelogram Lifting Mechanism was derived, implemented in both 

MATLAB and Python, and verified by comparing its result with a SolidWorks simulation. To 

optimize the spring install positions and spring parameters, we defined the fitness of our model 

to be the root-mean-square-error (RMSE) between the net moment at the base hinge across the 

range of allowed angles. Then multiple methods of optimization were applied to the model. The 

greedy algorithm managed to produce reasonable solutions when the number of parameters was 

small, yet produced dramatic results when the number of parameters increased. DQN and A2C 

learning was used later but both of them failed to learn to find optimal solutions. The genetic 

Algorithm was then used and proved to be able to produce consistently high-quality results as 

good as that produced by the greedy algorithm when the number of parameters was few and 

maintained its effectiveness even when the number of springs increased to 6 with 18 parameters 

in total. Genetic Algorithm was then used to produce a training set for deep learning. Yet, after 

examining those data carefully, we discovered a universal distribution of the install positions 

and the rotational effect (net RMSE) of rubber bands on the DPLM regardless of the number of 

them installed. The distributions were similar, almost identical when different numbers of 

rubber bands were used. It also showed that a large number of redundant rubber bands when 

the number reached 4 and therefore the effect of any number of rubber bands should be able to 

be closely approximated by using just 2 or 3 of them. Installing 2 rubber bands is optimal among 

all numbers of rubber bands. Rubber band triangles produce an overall much lower RMSE than 
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that of 2 rubber bands, therefore, concludes that triangle is the overall optimal way to install 

rubber bands on a DPLM. 

7.  Experiment 

7.1.  Goal 

The goal of the experiment is to show that the optimization result we obtain is correct and work 

in real situations with a prototype. 

7.2.  Experiment procedure 

1. Determine the spring rate and the initial length of the rubber bands used in this 

experiment. 

2. Determine the length and weight of the linkages in our mechanism 

3. Run the optimization with the measured parameters of the mechanism. 

4. Install the rubber bands on the apparatus according to the optimization results, compare 

and determine the error. 

7.3.  Execution 

7.3.1.  Apparatus 

The apparatus used in this experiment is built with VEX aluminum parts as in figure x. The 

upper linkage is connected to the lower one with a pair of meshing gears of the same size. There 

are screws on both the upper and lower linkage for rubber band installation. There are 47 holes 

on each linkage, therefore 47 possible installation positions of a rubber band. 

The following table and diagram list the length and mass of each linkage on the apparatus. 

 

linkage length mass 

O1O_1 0.4699 0.199692 

O_1O_2 0.1016 0.011295 

O1O2 0.1016 0.173292 

O3O_3 0.3937 0.177709 

O2O4 0.2921 
 

Table 3. The dimensions of the DPLM prototype 
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Table 4. The DPLM Prototype (left) and its Diagram (right) 

7.3.2.  Tensile testing 

Four types of rubber bands, as in the figure below, are tested. The initial lengths of the rubber 

bands are obtained by measuring them with a caliper. We use the tensile testing machine in the 

school laboratory to test each rubber band and determine their respective spring rate by doing 

linear regression in Python. Their respective initial lengths are as follows. 

 

Figure 26. A Caliper (left) and a Tensile Testing Machine (Right) 
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Name initial length 

Orange Rect Rubber 

Band 

92.27 

Orange Round Rubber 

Band 

127.38 

Sannex Rubber Band 98.83 

Diamond Rubber Band 119.37 

Table 5. The dimensions of the tested rubber bands 

 

Tensile tests are carried out on each of the rubber bands and their resulting graphs are plotted. 

 

Figure 27. Force against deflexion for four types of rubber bands. 

As in the figure, the orange round rubber band (left bottom corner) has the largest linear range 

among all four rubber bands, so it will be used in the following experiment. To decrease the 

number of rubber bands used in the experiment, we further shorten the initial length of the 

orange round rubber band to 92.37mm and test it with the tensile testing machine. As in the 

figure below, the spring rate increase to 74.32. and the new linear range is from 90mm to 

400mm.  
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Figure 28. Force against deflexion for two shortened rubber bands. 

 

Name initial length [mm] spring rate [N/m] linear range [mm] 

Orange Rect Rubber Band 92.27 125.22 200mm to 500mm 

Orange Round Rubber Band 127.38 47.46 40mm to 550mm 

Sannex Rubber Rand 98.83 60.52 50mm to 300mm 

Diamond Rubber Band 119.37 68.31 50mm to 300mm 

Shortened Orange Round  

Rubber Band 

92.37 55.89 90mm to 400mm 

Table 6. The Tested Parameters of the Rubber Bands 

7.3.3.  Optimization 

With the parameters, the genetic algorithm optimization program was carried out once to find 

the best rubber band installation position and the number of rubber bands that should be 

installed. The optimization result using rubber band triangles is: 

 

Figure 29. The GA Optimization Results (left) and its GA Iteration Curve (Right) 

 

The optimization results suggest that 10 rubber band triangles should be installed in position 

with one side of position ten and one side of position 2. This way the RMSE was only 0.069 as 

shown in the moment curve in the follow figure. 
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Figure 30. The Resulting Moment Curve 

7.3.4.  Results 

After installing 11 (1 more than the optimization result) rubber bands in the optimized position, 

the DPLM model was able to stop at any angle in the allowed angle range. However, the 

descend was much smoother than the ascend and the model was able to stop more quickly in 

the descend. Future experiments will be carried out to determine the reason for this discrepancy. 

The full experiment can be seen in the experiment video. 

7.4.  Conclusion of experiment 

The results of this experiment show that optimization is effective and consistent with the 

physical world. This experiment has provided a roadmap for future use of DPLM in industrial 

setting. 

8.  Applications 

As we are doing researches on our double parallelogram lifting mechanism, we are always 

considering where we can apply this mechanism to our daily life. This project was inspired by 

the design of our VEX & FRC robots. From the result of our robot competition, we can prove 

that the double parallelogram lifting mechanism is a great success and it really helped us in 

competitions. If we can combine this mechanism with something else, it may be a good 

innovation. In the following essay, we are going to list some of the usages of the double 

parallelogram lifting mechanism and what we and done and designed. 

8.1.  Standing Wheelchair 

A standing wheelchair must be a savior for wheelchair users. It allows users to stand up from a 

seating position by raising up the seat. With the wheelchair, users can interact with others at 

eye level, or grab things at a high position. Using a standing wheelchair is also a benefit for 

health like assisting blood circulation and prevent from osteoporosis. 

The existing standing wheelchairs are divided into electrical and manual control. The 

electrical type uses a motor to lift the lever underneath the seat and supporting the users in a 

standing position. This kind of standing wheelchairs is convenient, precise, and user-friendly 

because users are allowed to control their position with their fingers. But it cost much more 

than a usual wheelchair, creates a higher weight, and the components take up plenty of space. 
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Figure 31: Electric-powered standing wheelchair        Figure 32: Electric-powered standing 

wheelchair 

A manual standing wheelchair is also a good choice. It's much cheaper than an electronic one, 

and the mechanism is much more simple so it takes up less space. There are few types of manual 

standing wheelchairs in the market. Some use hydraulic rods, some use a belt transmission 

system to make the seat lifted up easily. Users are allowed to lift the seat up and stand up with 

just a little force of their hands. 

 

Figure 33: Manual standing wheelchair         Figure 34: Manual standing wheelchair 

The special thing about our parallelogram lifting mechanism is that we added some elastic 

material to it. With the elastic material, the whole mechanism can be lifted easily and stay at 

any height which makes it suitable to make up a standing wheelchair. Compare to the existing 
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hydraulic-powered standing wheelchair, the one equipped with our mechanism can be lighter 

and take up less space than the hydraulic one dose. Furthermore, our mechanism can be lifted 

and stay at any angle without any force. This allows users to stand at any angle and stay there. 

 

9.  Conclusion 

This project provides a theoretical basis for controlling DPLM in real-time with rubber bands 

by: 

• Deriving and verifying a mathematical model of DPLM. 

• Optimizing RB installation positions and parameters with GA. 

• Showing that a triangle is the overall optimal way to install rubber bands for the 

balance of DPLM. 

• verifying the optimization results with a prototype. 

10.  Future 

In the future, the effects of the changes in centers of mass of linkages on the moment balance 

of DPLM, the moment balance of DPLM when it is tilted at a certain angle, and the optimization 

method for DPLM with multiple Rubber bands installed will be further discussed and 

investigated based on the model and method proposed in this paper. 

Rehabilitation is very important to people after injured or people who suffer from an illness 

like Muscular dystrophy. The main purpose of rehabilitation is to help patients move by 

themselves persistently so that their muscles will not lose their function. Common exercises for 

rehabilitation are walking practice and sit-to-stand exercises, and we found out that our 

parallelogram lifting mechanism can be used in a sit-to-stand assisting machine. 

The top parallelogram can be used as a lever to lift the whole mechanism; the bottom 

parallelogram can be mounted on the legs of the user. Users can lift their body with just a little 

bit of force from their hands. There are some similar products in the market now, for example 

'Sit2Stand' from Biodex[13]. It is also a machine that help patients to do stand up practice, but 

the differences is that the users can only use it on the seat of the machine and the size of the 

whole machine is huge. With the parallelogram lifting mechanism, our sit to stand assist 

machine can be mounted on the patient's body. Campare to the 'Sit2Stand' type of sit to stand 

assisting machine, our design is more flexible. 
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【評語】100041 

1. A good scientific report which contains theoretical basis, 

optimization, simulation, and experimental validation.  

2. The double parallelogram mechanism is a traditional yet 

important mechanism which has wide applications. The 

research was inspired by the daily-life scenario, and was 

extended for new applications.  

3. Instead of using rubber bands, springs may be a good 

alternative owing to its robustness as well as their linear 

relation between force and displacement. 

4. Gravity compensation is one of the topics in mechanism 

studies, and many other methods exist. The author can 

explore that a little bit. 

5. The video shows that the gravity compensation of the 

mechanism at some configurations seem not functional 

very well. The discrepancy between analysis and 

experimental results can be elaborated more. 
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