中華民國第62屆中小學科學展覽會作品說明書

國中組 生活與應用科學(一)科

032813

「燒」縱即「視」—家用體溫監測系統

學校名稱:桃園市立龍潭國民中學

作者:

指導老師:

國二 鄭凱云

黃銘義

國二 張梓麟

賴怡瑾

國二 曾宥喆

關鍵詞:Arduino、寶寶體溫機、MQTT (Message Queuing Telemetry Transport)

摘要

因為市面上測溫工具都不具 24 小時連續自動偵測體溫及聯網功能,所以我們想用 Arduino 自製測溫裝置,且能遠端監控體溫情形、將發燒訊息傳送到相關人員的群組上。經過準確度、測溫速度兩個實驗,我們找到符合我們需要的兩種感測器,分別是接觸式的 DS18B20 和非接觸式的 MLX90614,接著分別製作兩種感測器的架設裝置,接觸式的使用髮箍固定,非接觸式使用樂高來固定。並透過不同距離、溫度等實驗,最後得到最適擺放位置函數為 D=2.85×R (D=感測器到水面的高度,R=容器半徑),利用 motoblocky 寫程式,Arduino esp32 的聯網功能及 MQTT 通訊協議等低成本甚至免費的資源,做出可在嬰兒發燒時,將訊息透過可亮燈響鈴的室內主機、以及 line 訊息通知兩種管道有效傳達給家長的裝置。

壹、研究動機和目的

因為聽父母說小時候我們發燒時都會一直哭,父母親晚上都沒辦法好好睡覺,要一直起來幫我們量體溫,甚至他們外出工作的時候,也會掛心我們的體溫狀況。而我們上網查了一下資料,體溫監測系統大部分都是運用在醫院,價格昂貴,且不普及。於是我們詢問爸爸媽媽,如果市面上有家用 24 小時監測體溫的裝置,你們會想購買嗎?他們的回答是肯定的。所以我們想利用最少經費,做出一個能 24 小時監控體溫,在寶寶發燒時也能即時傳訊息提醒家長的機器。

貳、研究目的與問題

- 一、探討市面上已有的感測體溫方式
- (一)探討市面上已有的感測體溫方式的優缺點,並綜合比較其優點
- 二、綜合比較 Arduino 的各種測溫感測器,並且自製能測量體溫的「測溫裝置」
- (一)實驗一:準確度實驗
- (二)實驗二:測溫速度實驗
- (三) 綜合比較表
- 三、製作能架設測溫裝置的「固定裝置」,找出架設位置
- (一)接觸類型感測器的架設方法和位置
- (二)非接觸類型感測器的架設方法和位置

四、將測溫裝置所測出不正常體溫資訊有效傳達給家長

- (一)室內:自製主機,利用 MQTT(Message Queuing Telemetry Transport)通訊協定以亮燈和響鈴通知家庭成員
- (二)室外:1.利用 Thinkspeak, 24 小時監測體溫並以折線圖呈現
 - 2.利用 IFTTT(if this then that)機制,將發燒通知傳到父母 LINE 群組

五、成品的運作效果

- (一)作動流程圖
- (二)實際運作的情況和照片

參、研究設備及器材

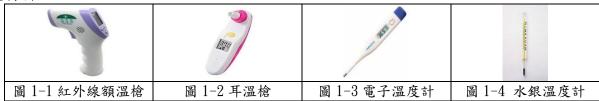
一、Arduino 硬體

in a second	635838	Q ₀		A PARTIE OF THE	diff
LM35	MLX90614	DS18B20	ESP32	MAX6675	電阻
		9			
杜邦線	ESP32 擴充板	蜂鳴器	LED 燈	麵包板	電腦

二、軟體

1/2/102			
motoBlockly	口ThingSpeak	IFTTT	MQTI
motoduino	Thingspeak	IFTTT	MQTT
LINE	000		
LINE	Arduino		

三、一般設備


四、研究流程圖

肆、研究方法和結果

一、探討市面上已有的感測體溫方式

(一)研究材料:

(二)研究方法及步驟:

- 1.利用文獻探討的方式,找出市面上各種測溫方式的發燒標準、量測方式、測量誤差、 是否能 24 小時連續自動偵測體溫與聯網。
- 2.用表格綜合比較測量誤差、可不可以 24 小時連續自動偵測體溫、可不可以聯網和量測一次體溫 所需時間。

(三)研究結果:

- 1.額溫 (工具:紅外線額溫槍)
- (1)發燒標準: ≥37.5℃
- (2)測量誤差:易受當下環境影響、若是剛剛走路或運動,體溫可能略高。
- (3)可不可以聯網:不可以。
- (4)可不可以 24 小時連續自動偵測體溫:不可以。
- (5)量測一次體溫所需時間:1~15秒。
- 2. 耳溫 (工具:耳溫槍)
 - (1)發燒標準: ≥38℃(大約等於中心體溫)。
 - (2) 測量誤差:注意耳垢清潔。
 - (3)可不可以聯網:不可以。
 - (4)可不可以 24 小時連續自動偵測體溫:不可以。
 - (5)量測一次體溫所需時間:1~15秒。
- 3. 腋溫 (工具:電子溫度計、水銀溫度計)
- (1)發燒標準: ≥37~37.2℃。
- (2)測量誤差:時間未到,鬆開腋下,則需重新測量。
- (3)可不可以聯網:不可以。
- (4)可不可以 24 小時連續自動偵測體溫:不可以。
- (5)量測一次體溫所需時間:電子溫度計 1分鐘,水銀溫度計 3~10分鐘。
- 4.口溫(工具:電子溫度計、水銀溫度計)
 - (1)發燒標準:≥37.5℃。
 - (2)測量誤差:吃完東西後,最好30分鐘再測量。吸煙也會影響口溫,最好避免。
 - (3)可不可以聯網:不可以。
 - (4)可不可以 24 小時連續自動偵測體溫:不可以。
 - (5)量測一次體溫所需時間:電子溫度計 1分鐘,水銀溫度計 2~5分鐘。
- 5. 肛溫 (工具:電子溫度計、水銀溫度計)
 - (1)發燒標準:≥38℃
 - (2) 測量誤差: 需小心交叉使用造成的感染。
 - (3)可不可以聯網:不可以。
 - (4)可不可以 24 小時連續自動偵測體溫:不可以。
 - (5)量測一次體溫所需時間:電子溫度計 1分鐘,水銀溫度計 1~3分鐘。

(四)綜合比較:

	表 1-1 市面上各種測溫方式的比較				
	1.額溫	2. 耳溫	3.腋溫	4.口溫	5.肛溫
24 小時連續 自動偵測體溫	X	X	X	X	X
聯網	X	X	X	X	X
測量時間	約三秒	約三秒	3 分鐘以上	電子溫度計 1分鐘 水銀溫度計 2~5 分鐘	電子溫度計 1分鐘 水銀溫度計 1~3 分鐘
誤差值	±0.5 度	±0.3 度	±0.2 度	±0.2 度	±0.2 度

【說明】

- 1.因為市面上常見的測溫工具都不具備 24 小時連續自動偵測體溫及聯網功能、會有測量誤差。
- 2. 腋溫、口溫、肛溫所需測量時間超過1分鐘。
- 3.我們決定用 Arduino 自製測溫裝置,讓自製溫度計(1)<mark>能夠 24 小時偵測體溫</mark>,並且(2)<mark>遠端監控體溫情形</mark>,(3)<mark>將發燒訊息傳送到相關人員的群組。</mark>

二、綜合比較 Arduino 的各種測溫感測器,並且自製能測量體溫的「測溫裝置」

(一)實驗一:準確度實驗

*目的: 我們將加熱板溫度設定在 35-40 度之間,透過準確度實驗,我們想比較出哪一個感測器讀出的溫度數值和加熱板是最接近的

1.研究原理:

(1)LM35 溫度感測器(接觸型)

作動原理:LM35 是種內部電路已校準的集成電壓型溫度感測器,且 LM35 的輸出電壓與攝氏溫度成正比。

(2)DS18B20 水溫感測器模組(接觸型)

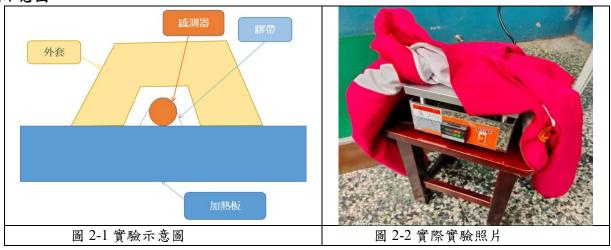
作動原理: DS18B20 是美信公司的一款溫度傳感器,單片機可以通過 1-Wire 協議與 DS18B20 進行通信,最終將溫度讀出。(1-Wire 資料傳輸協定是 Maxim 子公司的專利技術,用單一訊號線就可傳輸時鐘和資料,並且資料傳輸是雙向的)。

(3)MAX6675 溫度感測器(接觸型)

作動原理: MAX6675 利用冷端補償来檢測並校正環境温度的變化。該設備使用溫度感應二極管 將環境溫度讀數轉換為電壓。

(4)MLX90614 紅外線溫度感測器(非接觸型)

作動原理: MLX90614 在信號調節晶片中採用低噪音放大器,放大微小的熱電偶電壓並將其數字化,通過使用晶片 EEPROM 記憶體中儲存的生產廠設定校準參數,計算出物體的溫度。


(5)ESP32

作動原理:可作為微控制器使用且具有完整 TCP/IP 協議的 Wi-Fi IoT 控制晶片。

2.研究步驟和方法

- *接觸類型感測器測試: LM35 溫度感測器、DS18B20 水溫感測器模組、MAX6675 溫度感測器
- (1) 將加熱板分別設定加溫到 35 度、36 度、37 度、38 度、39 度、40 度
- (2)將感測器與微控制板 ESP32 連接,編寫程式,讀取數值
- (3)將感測器用膠帶固定於加熱板上,確保感測器有接觸到加熱板
- (4)用外套把感測器蓋住,模擬寶寶穿著衣服測量腋溫
- (5)將接觸式感測器分別測量不同溫度的加熱板,每個溫度各測量 15 次
- (6)將結果製成折線圖並相互比較,判斷能否測量體溫及準確度
- (7)如果<mark>感測器測出的溫度和加熱板</mark>設定的<mark>溫度不相近</mark>,就代表它無法測量體溫或者是不準確, 不納入考量,相近就代表它準確而且可以用來測量體溫。

3.實驗示意圖

4.實驗流程圖(以 DS18B20 測量 35 度的加熱板為例)

【說明】我們將序列埠讀出來的溫度數值截圖整理為表 2-1~2-6 的表格,加上折線圖, 來做數據分析。

5.實驗結果

(1)接觸式感測器序列埠溫度數值表格及折線圖

	加熱板 35°C時			
次數	LM35	DS18B20	MAX6675	
第1次	27.25	35.69	35.25	
第2次	27.44	35.69	36.00	
第3次	27.05	35.69	35.50	
第 4 次	27.64	35.69	35.50	
第5次	27.64	35.69	35.25	
第6次	27.76	35.69	35.50	
第7次	27.54	35.69	35.50	
第8次	27.25	35.69	35.75	
第9次	27.83	35.69	35.50	
第 10 次	27.56	35.69	35.50	
第 11 次	27.25	35.69	35.50	
第 12 次	27.25	35.69	35.75	
第 13 次	27.05	35.63	35.75	
第 14 次	26.56	35.63	35.50	
第 15 次	26.95	35.69	35.00	
<mark>平均</mark>	27.33	35.68	35.52	
折線圖	35.8 35.6 35.4 35.2 35 34.8 34.6 30 25	が (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	MAX6675	
說明	距只有 0.6-0.8 度 1.MAX6675 (藍線) 1:36 度和加熱板 35 度相 2.LM35 (灰線) 15 次 7.1-8.5 度 3.從三種感測器的平均	则量在 35.6-35.8 度的區間 5 次測量在 35-36 度的區間 1差 1 度,而最低溫 B 點 测量都在 26.5-27.9 度間 (1)	間上下震盪, <mark>最高溫 A</mark> 35 度和加熱板 35 度 ⁹ 非徊,和加熱板 35 度差 18B20 和 MAX6675 自	

	n熱板 36 度時,序列埠讀	出來的數值和不同感測器	讀取的數值關係
温度數值 測		加熱板 36℃時	
次數	LM35	DS18B20	MAX6675
第1次	27.44	36.69	36.25
第2次	27.44	36.63	36.25
第3次	27.25	36.69	36.25
第 4 次	26.56	36.63	36.50
第5次	25.78	36.63	36.75
第6次	27.25	36.69	36.00
第7次	26.56	36.63	36.75
第8次	27.05	36.63	36.75
第9次	26.95	36.63	36.25
第 10 次	26.56	36.63	36.75
第 11 次	27.54	36.63	37.00
第 12 次	26.66	36.63	36.75
第 13 次	25.49	36.63	36.00
第 14 次	27.93	36.63	36.00
第 15 次	27.15	36.63	36.75
<mark>平均</mark>	<mark>26.91</mark>	<mark>36.64</mark>	36.47
折線圖		加熱板36°C	次第11次第12次第13次第14次第15次 平均 MAX6675
說明	36 度的差距只有 0.6-0.8 2.MAX6675 (藍線) 15 37 度和加熱板 36 度相差 3.LM35 (灰線) 15 次測 10.5 度 4.從三種感測器的平均測	度 次測量在 36-37 度的區間 上 1 度,而最低溫紅色 B 量都在 25.5-28 度間徘迴 引得溫度可看出,DS18B2	到 36.8 度的區間,和加熱板 上下震盪,最高溫紅色 A 點 點 36 度和加熱板 36 度吻合 ,和加熱板 36 度差距有 8- 20 和 MAX6675 的平均 均和加熱板 36 度差距為 9.09

表 2-3 加	熱板37度時,序列埠讀	出來的數值和不同感測器	讀取的數值關係
溫度數值 測		加熱板 37°C時	
次數	LM35	DS18B20	MAX6675
第1次	27.54	37.44	37.00
第 2 次	29.79	37.44	37.25
第3次	29.20	37.44	37.00
第 4 次	29.98	37.44	37.00
第5次	29.79	37.44	37.25
第6次	29.39	37.44	37.00
第7次	29.69	37.44	37.00
第8次	29.59	37.44	36.50
第9次	29.98	37.44	37.25
第 10 次	29.69	37.44	37.25
第 11 次	29.39	37.44	36.75
第 12 次	29.39	37.44	37.00
第 13 次	29.69	37.44	37.00
第 14 次	29.69	37.44	37.00
第 15 次	28.81	37.44	37.00
平均	30.11	37.44	37.02
折線圖		第5次 第6次 第7次 第8次 第9次 第10- 實際溫度 — LM35 — DS18820	次第11次第12次第13次第14次第15次 平均
說明	0.44 度 2.MAX6675 (藍線) 15 A 點 37.25 度和加熱板板 35 度差距 1.5 度 3.LM35 (灰線) 15 次% 7-9.5 度之多 4.從感測器的平均測得	37 度差距 0.25 度,而最低 則量都在 27.5-30 度之間徘 溫度可看出,DS18B20 和	區間上下震盪, <mark>最高溫</mark> 紅色 、溫紅色 B 點 36.5 度和加熱

	為板 38 度時,序列埠讀	出來的數值和不同感測器	讀取的數值關係		
		加熱板 38℃時			
次數	LM35	DS18B20	MAX6675		
第1次	32.81	38.31	38.50		
第2次	32.13	38.31	38.00		
第3次	31.74	38.31	38.75		
第4次	31.35	38.31	38.50		
第5次	31.45	38.31	38.75		
第6次	31.25	38.31	38.75		
第7次	31.35	38.31	38.75		
第8次	31.74	38.31	38.75		
第9次	31.25	38.31	38.50		
第 10 次	31.05	38.31	38.25		
第 11 次	31.25	38.31	38.75		
第 12 次	31.74	38.25	38.25		
第 13 次	31.84	38.25	38.75		
第 14 次	31.05	38.31	39.00		
第 15 次	30.76	38.31	38.75		
平均	31.52	38.30	<mark>38.60</mark>		
折線圖		加熱板38℃	文第11次第12次第13次第14次第15次 平均—MAX6675		
說明	1.DS18B20(黃線)15 次 度的差距約為 0.2-0.4 度 2.MAX6675(藍線)15 39 度和加熱板 38 度相 3.LM35(灰線)15 次 有 5.2-7.3 度 4.從三種感測器的平均	則量很穩定的在 38.2 到 38. 5 次測量在 38-39 度的區間 差 1 度,而最低溫紅色 B 顯 劃量都在 30.7-32.8 度之間 測得溫度可看出,DS18B2			

表 2-5 加熱板 39 度時,序列埠讀出來的數值和不同感測器讀取的數值關係 感 加熱板 39℃時 測 温度數值 器 **LM35 DS18B20 MAX6675** 次數 第1次 32.00 39.13 39.25 第 2 次 32.00 39.06 39.25 31.50 39.06 39.25 第3次 31.75 39.13 39.50 第 4 次 第5次 32.00 39.13 39.25 32.00 39.06 39.75 第6次 32.00 39.06 39.25 第7次 32.00 39.06 39.00 第8次 第9次 31.75 39.06 39.00 32.00 39.06 39.00 第10次 第 11 次 31.50 39.06 38.75 32.50 39.06 39.25 第12次 32.25 39.06 39.00 第 13 次 第14次 32.00 39.06 39.50 32.50 第15次 39.06 39.75 31.98 39.07 39.25 平均 加熱板39℃ 39.6 39.4 39.2 折 線 39 圖 38.8 30 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次第11次第12次第13次第14次第15次 平均 ——實際溫度 ——LM35 ——DS18B20 ——MAX6675 1.DS18B20(黄線)15 次測量很穩定的在 39 到 39.2 度的區間,和加熱板 37 度 的差距約為 0.2 度 2.MAX6675(藍線)15次測量在38.75-39.75度的區間上下震盪,最高溫紅 色 A 點 39.75 度和加熱板 39 度差距 0.75 度,而最低溫紅色 B 點 38.75 度和 加熱板 39 度差距 0.25 度 說明 3.LM35(灰線)15次測量都在31.5-32.5度之間徘徊,和加熱板39度差距約 有 6.5-7.5 度 4.從三種感測器的平均測得溫度可看出,DS18B20和的平均溫度與加熱板39 度<mark>差距</mark>為 <mark>0.7 度和 0.25 度</mark>,而 LM35 的<mark>平均温度</mark>和加熱板 39 度<mark>差距</mark>則為 <mark>7.02</mark> 度

温度數值 淵	加熱板 40°C時			
次數	LM35	DS18B20	MAX6675	
第1次	31.15	40.25	39.75	
第2次	31.15	40.25	40.00	
第3次	31.45	40.31	39.75	
第 4 次	30.37	40.25	39.75	
第5次	30.27	40.31	40.00	
第6次	31.05	40.25	39.50	
第7次	30.39	40.31	39.75	
第8次	31.05	40.31	39.75	
第9次	31.45	40.31	39.75	
第 10 次	30.96	40.25	39.75	
第 11 次	31.15	40.25	40.00	
第 12 次	31.25	40.25	39.75	
第 13 次	31.15	40.31	40.00	
第 14 次	31.25	40.31	39.75	
第 15 次	31.25	40.31	39.75	
平均	31.02	40.28	39.80	
折線圖	40.2 40 39.8 39.6 35 30 第1次 第2次 第3次 第4次	第5次 第6次 第7次 第8次 第9次 第10 實際温度 — LM35 — DS18B20	0次第11次第12次第13次第14次第15号	
	35 30 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次第11次第12次第13次第14次第15次			

7.綜合分析:

- (1)LM35 所測量到的溫度和實際溫度差距最多有到 9.8 度(表 2-6),且 LM35 的數據不穩定。
- (2) DS18B20 所測量到的溫度誤差值都在 0.2-0.8 度以內(表 2-4), 且數據穩定, 大多的數據都呈直線
- (3) MAX6675 所測得的溫度雖然誤差也在 0-1.5 度以內(表 2-3),但數據十分不穩定,一下高一下低
- (4)根據實驗結果,我們得出接觸式感測器的 DS18B20 水溫感測器模組是三種感測器中準確度最高的,因為它的溫度誤差值都在 0.2-0.8 度以內,且數據十分穩定。

*非接觸類型感測器測試:MLX90614 紅外線溫度感測器

1.研究步驟與方法

- (1) 將加熱板分別設定加溫到 35 度、36 度、37 度、39 度、40 度
- (2)將感測器與微控制板 ESP32 連接,編寫程式,讀取數值
- (3)將感測器用懶人支架固定於加熱板上方
- (4)將接觸式感測器分別測量不同溫度的加熱板,每個溫度各測量 15 次
- (5)將結果製成折線圖並相互比較,判斷能否測量體溫及準確度。
- (6)如果感測器測出的溫度和加熱板設定的溫度不相似,就代表它無法測量體溫或者是不準確,不納入考量,如果相似就代表它準確而且可以用來測量體溫。

2.實驗示意圖:

3.實驗流程圖(以 MLX90614 測量 35 度的加熱板為例)

圖 2-11 將加熱板設定加溫到 35 度

圖 2-12 編寫程式

圖 2-13 將感測器用懶人支架固定於 加熱板上方

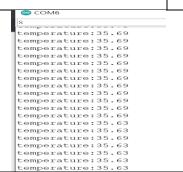


圖 2-14 等待感測器讀取數值 15 次

圖 2-15 重複以上動作再用感測器分別測量 35 度、 36 度、37 度、39 度、40 度的加熱板

4.實驗結果

(1)非接觸式感測器序列埠溫度數值表格及折線圖

	2-7 加熱板 35 度時,序列埠讀出來的數值和不同感測器讀取的數值關係 加熱板 35℃時
次數	MLX90614
第1次	35.63°C
第 2 次	35.85°C
第3次	35.83°C
第 4 次	35.81°C
第5次	35.67°C
第6次	35.71°C
第7次	35.61°C
第8次	35.55°C
第 9 次	35.81°C
第 10 次	35.81°C 35.77°C
第11次	35.7/°C 35.89°C
第 12 次 第 13 次	35.89℃ 35.93℃
第 14 次	35.81°C
第 15 次	35.51 ℃ 35.51°C
平均	35.75°C
折線圖	加熱板35度時 36.1 36.3 35.9 35.8 35.7 35.6 35.5 35.4 35.3 35.2 35.1 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 第11次 第12次 第13次 第14次 平均
說明	—實際溫度 — MAX6675 1.MLX90614 (橘線) 15 次測量在 35-36 度的間上下震盪,最高溫 A 點 36 度和加熱板 35 度相差 1 度,而最低溫 B 點 35 度和加熱板 35 度吻合 2.從感測器的平均感測到的溫度可以看出,MLX90614 與加熱板 35 度差距為 0.75 度

表	2-8 加熱板 36 度時,序列埠讀出來的數值和不同感測器讀取的數值關係
	加熱板 36°C時
次數	MLX90614
第1次	36.33°C
第2次	36.45°C
第3次	36.41°C
第 4 次	36.37°C
第5次	36.65°C
第6次	36.65°C
第7次	36.57°C
第8次	36.69°C
第9次	36.55°C
第 10 次	36.71°C
第11次	36.89°C
第 12 次	36.79°C
第 13 次	36.77°C
第 14 次	36.79°C
第 15 次	36.89°C
<mark>平均</mark> ————	<mark>36.63</mark> ℃
折線圖	加熱板36度時 37.2 37.3 36.8 36.6 36.4 36.2 36.3 36.8 35.6 35.8 35.6 35.6 35.4 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 第11次 第12次 第13次 第14次 第15次 平均 實際温度 — MAX66752
說明	1.MLX90614(橘線)15次測量在36-37度的間上下震盪,最高溫A點37度和加熱板36度相差1度,而最低溫B點36度和加熱板36度吻合 2.從感測器的平均感測到的溫度可以看出,MLX90614與加熱板36度差距為0.63度

	2-9 加熱板 37 度時,序列埠讀出來的數值和不同感測器讀取的數值關係
	加熱板 37°C時
次數	MLX90614
第1次	37.55°C
第2次	37.43°C
第3次	37.41°C
第 4 次	37.49°C
第5次	37.69°C
第6次	37.61°C
第7次	37.51°C
第8次	37.59°C
第9次	37.63°C
第 10 次	37.59°C
第 11 次	37.85°C
第 12 次	37.75°C
第 13 次	37.67°C
第 14 次	37.71°C
第 15 次	37.91°C
平均	<mark>37.62</mark> ℃
折線圖	加熱板37度時 37.1 37.1 36.9 36.8 36.7 36.6 36.5 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次第11次第12次第13次第14次第15次 平均 實際溫度 MAX6675
說明	1.MLX90614(橘線)15次測量在36.5-37.3度的間上下震盪,最高溫A點37.25度 和加熱板37度相差0.25度,而最低溫B點36.5度和加熱板37度相差0.5度 2.從感測器的平均感測到的溫度可以看出,MLX90614與加熱板37度差距為0.62度

	2-10 加熱板 39 度時,序列埠讀出來的數值和不同感測器讀取的數值關係
	加熱板 39℃時
次數	MLX90614
第1次	39.41°C
第2次	39.33℃
第3次	39.23℃
第 4 次	39.23℃
第5次	39.31℃
第6次	39.39℃
第7次	39.23°C
第8次	39.29°C
第9次	39.11°C
第 10 次	39.55°C
第 11 次	39.19℃
第 12 次	39.19℃
第 13 次	39.33°C
第 14 次	39.05°C
第 15 次	39.33°C
<mark>平均</mark>	39.27°C
折線圖	加熱板39°C時 39.6 39.5 39.4 39.3 39.2 39.1 39 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次第11次第12次第13次第14次第15次 平均
說明	—實際溫度 — MLX90614 1.MLX90614(橘線)15次測量在39-39.6度的間上下震盪,最高溫A點39.55度和加熱板39度相差0.55度,而最低溫B點39.05度和加熱板39度相差0.05度 2.從感測器的平均感測到的溫度可以看出,MLX90614與加熱板39度差距為0.27度

表	2-11 加熱板 40 度時,序列埠讀出來的數值和不同感測器讀取的數值關係
	加熱板 40℃時
次數	MLX90614
第1次	40.45°C
第2次	40.31°C
第3次	40.37°C
第 4 次	40.47°C
第5次	40.35°C
第6次	40.57°C
第7次	40.35°C
第8次	40.51°C
第9次	40.45°C
第 10 次	40.29°C
第11 次	40.39°C
第 12 次	40.29°C
第 13 次	40.31°C
第 14 次	40.37°C
第 15 次	40.25°C
平均	<mark>40.38</mark> ℃
折線圖	加熱板40℃時 40.6 40.5 40.4 40.3 40.2 40.1 40.1 40.1 40.1 40.2 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 第11次 第12次 第13次 第14次 第15次 平均
說明	—實際溫度 — MLX90614 1.MLX90614 (橘線) 15 次測量在 40.2-40.6 度的間上下震盪,最高溫 A 點 40.57 度和加熱板 40 度相差 0.57 度,而最低溫 B 點 40.25 度和加熱板 40 度相差 0.25 度 2.從感測器的平均感測到的溫度可以看出,MLX90614 與加熱板 40 度差距為 0.38 度

5.綜合分析:

- (1)由圖可知,MLX90614 所測量到的溫度和實際溫度都相差 0.2-0.7 度之間
- (2)MLX90614 誤差值也在一度以內,測量結果穩定
- (3)MLX90614 測得的溫度是<mark>準確且穩定的,所以可用來製作量測體溫的裝置</mark>
- (4)在實驗過程中我們發現,量測到的溫度會隨著量測距離而改變,所以我們會在後面研究問題 三來做實驗及討論(在本實驗中距離固定)

(二)實驗二:測溫速度實驗

*目的:我們想找出哪一種感測器能最即時反應人體的體溫狀況,不要人體發燒了感測器過了很久才讀出溫度數值,所以我們透過測溫速度實驗,使用加熱板找出反應時間最短的感測器

1.實驗步驟和方法

- (1)用計時器計時,加熱板從35℃上升到40℃所需時間
- (2)用計時器計時,並依序測試 LM35、MLX90614、DS18B20、MAX6675 量測加熱板 35℃(正常體溫)上升到 40℃(發燒溫度)所需的反應時間,模擬人體溫度從 35℃(正常體溫)上升到 40℃(發燒溫度)
- (3)重複步驟(1)、(2)三次,並算出各種感測器反應時間的平均
- (4)用長條圖比較 LM35、MLX90614、DS18B20、MAX6675、加熱板從 35℃到 40℃所需的反應時間

2.實驗流程圖

圖 2-16 將感測器固定在加熱板上(模擬人體發熱)

圖 2-17 蓋上外套(模擬人穿外套測溫,減少熱能外洩)

圖 2-18 開始計時及加熱

圖 2-19 讀溫度數值

【說明】將實驗結果以表格 2-12 和圖 2-20 來表示:

3.實驗結果:

(1)將實驗結果以表格表示:

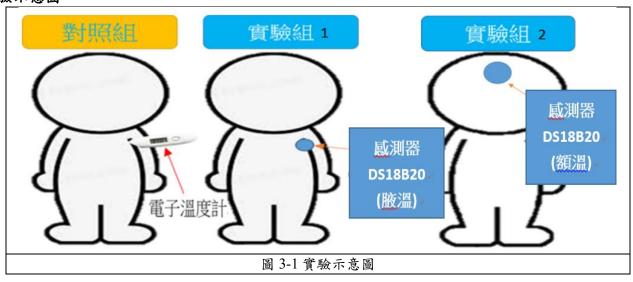
(=)/// >(*//	And Mean when In when I are					
	表 2-12 各種感測器量測加熱板從 35℃到 40℃所需的反應時間					
	第一次所需時間(秒)	第二次所需時間(秒)	第三次所需時間(秒)	平均一次所需時間(秒)		
LM35	443.57	483.49	446.21	457.76		
MLX90614	86.93	81.63	89.49	86.02		
DS18B20	230.52	204.37	264.16	233.02		
MAX6675	281.09	303.14	272.53	285.59		

(2)將實驗結果以長條圖表示:

圖 2-20 各種感測器量測加熱板從 35℃到 40℃所需的反應時間關係長條圖

【說明】

- (1)從表 2-12 知 35~40℃反應最快的是 MLX90614 平均 85.97 秒, 而最慢的是 LM35, 平均 457.76 秒
- (2)從圖 2-20 中更能看出,MLX90614 三次測溫時間都低於其他感測器
- (3)當人體從正常體溫到發燒體溫時,MLX90614幾乎同步反應體溫狀況


4.綜合比較

根據實驗一:準確度實驗和實驗二:測溫速度實驗,我們整理獲得下列表格

表 2-13 綜合比較圖					
	LM35	MLX90614	DS18B40	MAX6675	
準確度	不穩定、不準確	穩定、準確	穩定、準確	不穩定、準確	
平均測溫一次所需時間(秒)	457.76	<mark>86.02</mark>	233.02	285.59	

- (1)準確度實驗,符合<mark>穩定及準確</mark>的是 DS18B20 和 MLA90614
- (2) 測溫速度實驗,各類型最快速的分別是 DS18B20 和 MLX90614
- (3)最後我們選擇 DS18B20 來製作接觸式測溫裝置,選擇 MLX90614 來製作非接觸式測溫裝置
- 三、製作能架設測溫裝置的「固定裝置」,並找出架設位置
- *目的:透過此實驗,我們要決定把接觸型感測器放置在額頭或腋下
- (一)接觸類型感測器 (DS18B20) 的架設方法和位置
- 1.研究步驟和方法:
- (1)利用髮箍製作頭套固定感測器(DS18B20)
- (2)利用酒精溫度計量測腋溫(對照組)
- (3)將咸測器直接放置腋下量測腋溫(實驗組1)
- (4)利用自製頭套,將感測器裝在頭套裡,量測額頭的溫度(實驗組2)
- (5)分別尋找三個不同的人進行(2)(3)(4)動作,並且詢問配戴測溫過程是否有不適的感覺
- (6)而配戴感測器的位置如果有不適感,考量寶寶感受,亦不納入考量

2.實驗示意圖

3.實驗流程圖

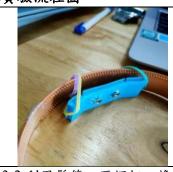


圖 3-2 利用髮箍、瓦楞板、橡皮筋 製作固定 DS18B20 的頭套

圖 3-3 將 ESP32 和 DS18B20 固定在 頭套上

圖 3-4.酒精溫度計量腋溫(對照組)

圖 3-5 DS18B20 測腋溫(實驗組 1)

圖 3-6 DS18B20 測額溫(實驗組 2)

圖 3-7 觀察並計算 15 筆數值平均

【說明】

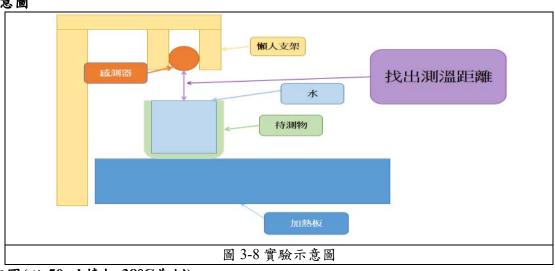
我們將對照組、實驗組1和實驗組2的數據整理成表3-1

4.實驗結果

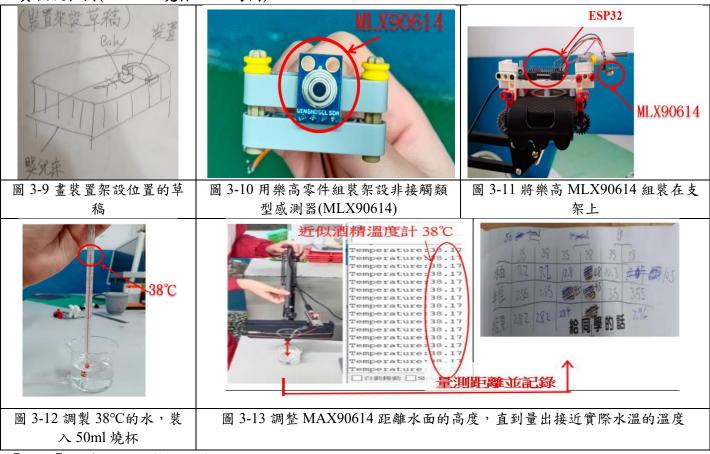
4.實驗結果 		表 3-1 實驗組 1、實驗組	· 中對照組之關係圖		
安	實驗者	實驗者A	實驗者B	實驗者C	
酒精溫度計真實腋溫(℃) (對照組)		36.6 36.3		36.5	
DS18B20 量測 腋溫	DS18B20 測得腋温 數據 (℃)	© 100	Olish	© 10.00 - 0 181 Outperform 12.10 181 Outperform	
(實驗組1)	15 筆測溫平均	<mark>35.5</mark>	35.35	35.3	
	是否有不適感	有	有	無	
	實驗組和對照組溫 度差距	1.1	0.95	1.2	
DS18B20 量測 額溫	DS18B20 測得額溫 數據 (℃)	District	© 1000	Q	
(實驗組2)		34.63	34.15	34.34	
	是否有不適感	無	無	無	
	實驗組和對照組溫 度差距	1.97	2.15	2.16	

【說明】

- (1)DS18B20 量測 腋溫 (實驗組 1) 和真實體溫的差距,落在 1°C 上下 (0.95°C~1.2°C)
- (2)DS18B20 量測額溫 (實驗組2)和真實體溫的差距,落在2°C上下 (1.97°C~2.16°C)
- (3)兩種量側方式和真實體溫的差距都算穩定
- (4)多數實驗者反應實驗組1有些許不適感
- (5)決定使用實驗組 2(戴頭套量測額溫),並用程式調整溫差


(二)非接觸類型感測器(MLX90614)的架設方法和位置

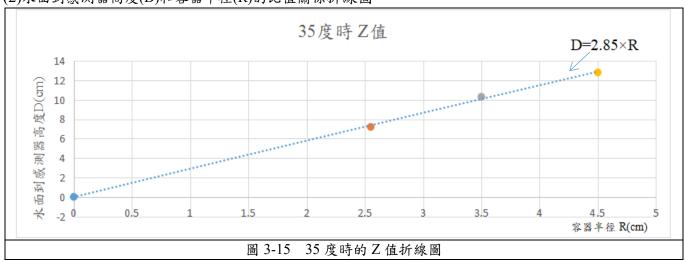
*目的:我們從實驗一得知 MLX90614 距離待測物太近量測溫度會過高,距離待測物太遠量測溫度會過低,後來我們從文獻查出待測物的量測溫度和待測物的半徑有關,所以此實驗使用三種不同半徑的容器和兩種不同的水溫來找出 MLX90614 的最佳測溫距離

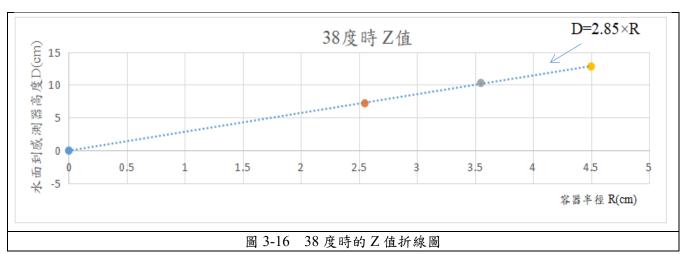

1.研究步驟與方法

- (1)用樂高零件製作架設裝置
- (2)將 MLX90614 用樂高零件架設在支架上
- (3)先調製35、38℃的水,裝入3種容器內
- (4)調整 MAX90614 距離水面的高度,直到量出接近實際水溫的溫度
- (5)用表格紀錄容器半徑、感測器距離水面高度、前兩項之比值
- (6)觀察比值否有規律

2.實驗示意圖

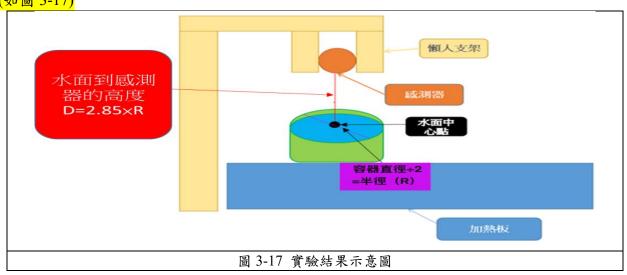
3.實驗流程圖(以 50ml 燒杯 38℃為例)


【說明】將實驗結果整理成表 3-2


4.實驗結果:

(1)表格

表 3-2 容器半徑、感測器距離水面高度、前兩項之比值之關係圖						
容器	50ml	燒杯	500ml 燒杯		馬克杯	
容器照片	30ml 50 30ml 20 30ml 2	Strail = 50 33 = 50 53 = 20 55 = 17 = 19	300 - 500 -	30	Ciptu.	Ciptu
酒精溫度計實際水溫 (℃)	35	38	35	38	35	38
MAX90614 讀取到的 數值圖 (溫度)	Pemperature: 35.15 Pemperature: 35.15 Pemperature: 35.29	Temperature: 38.17 Temperature: 38.27	Temperature: 35.81 Temperature: 35.89 □□前婚齡□Show timestume	Temperature:38.13 Temperature:38.13 Temperature:38.13 Temperature:38.17 Temperature:38.17 Temperature:38.17 Temperature:38.17 Temperature:38.17 Temperature:38.17 Temperature:38.17 Temperature:38.25 Temperature:38.25 Temperature:38.25 Temperature:38.25 Temperature:38.25 Temperature:38.25 Temperature:38.25	Temperature: 35.15 Temperature: 35.15 Temperature: 35.29 Temperature: 35.29 Temperature: 35.29 Temperature: 35.29 Temperature: 35.29 Temperature: 35.29 Temperature: 35.50 Temperature: 35.53	Temperature: 38.09 Temperature: 38.11 Temperature: 38.11 Show timestamp
感測器 15 筆平均溫度	35.27	38.10	35.82	38.19	35.30	38.09
容器半徑圖	0.53	R=5.1/2 cm	R=9	/2 cm	R=7/:	2 cm
容器半徑 R(cm)	2.55	2.55	4.5	4.5	3.5	3.5
水面到感測器高度圖		2.2 cm				10.3cm
水面到感測器高度 D(cm)	7.2	7.2	12.8	12.8	10.3	10.3
比值 Z(cm) (Z=D÷R)	2.82	2.82	2.84	2.84	<mark>2.94</mark>	<mark>2.94</mark>


(2)水面到感測器高度(D)和容器半徑(R)的比值關係折線圖

【說明】*藍色虛線是函數 D=2.85×R 畫出來的直線圖, 橘色點點是 50ml 燒杯灰色點點是馬克杯,黃色點點是 500ml 燒杯

- (1)X 軸是容器半徑(R),Y 軸是水面到感測器高度(D)。
- (2)因為 6 次實驗所測量出來的比值都很接近 D=2.85×R 直線附近,可推測容器半徑和水面到感測器高度的比值大約等於 2.85。
- (3) 35 度到 38 度測量情況相同,無論容器的容量、材質、半徑又或是水溫的高低,都不會大幅度影響比值。
- (3)因為測量容器半徑和水面到感測器高度時不是用精密儀器,會有誤差,所以出來數據也會有 些許的誤差。
- (5)我們<mark>只要知道要測量的區域的半徑,再乘以 2.85,就可以推論出架設 MAX90614 的最適距離 (如圖 3-17)</mark>

四、將裝置(作品名稱)所測出不正常體溫資訊有效傳達給家長

(一)室內:自製主機,利用 MQTT(Message Queuing Telemetry Transport)通訊協定亮燈和響鈴通 知家庭成員

1.研究原理

(1)MQTT

MQTT 協議中有三種角色:發佈者(Publisher)、代理(Broker)、訂閱者(Subscriber)。 用戶端的角色是發佈者和訂閱者,伺服器的角色是代理,訂閱者向代理訂閱主題後,一旦代理收到 相應主題的消息,就會向訂閱者轉發該消息。

2.研究步驟和方法

- (1)設計室內主機草稿
- (2)撰寫 MQTT、主機盒響鈴、亮燈程式
- (3)實際組裝電路
- (4)組裝室內主機盒

3.研究流程圖

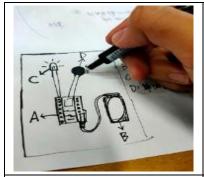


圖 4-1 畫室內主機設計圖

圖 4-2 雷切壓克力板,製作主機外殼

圖 4-3 用 motoduino 寫主機程式

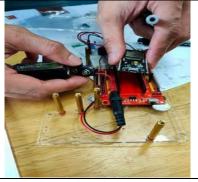


圖 4-4 組裝電路和外殼

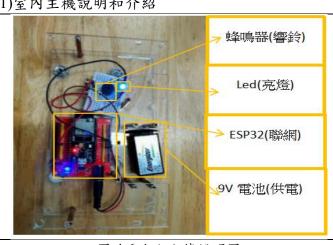



圖 4-5 測試程式主機能否作動

4.研究結果

(1)室內主機說明和介紹

(2)程式說明

圖 4-6 室內主機說明圖 圖 4-7 程式說明圖

(3)實際照片

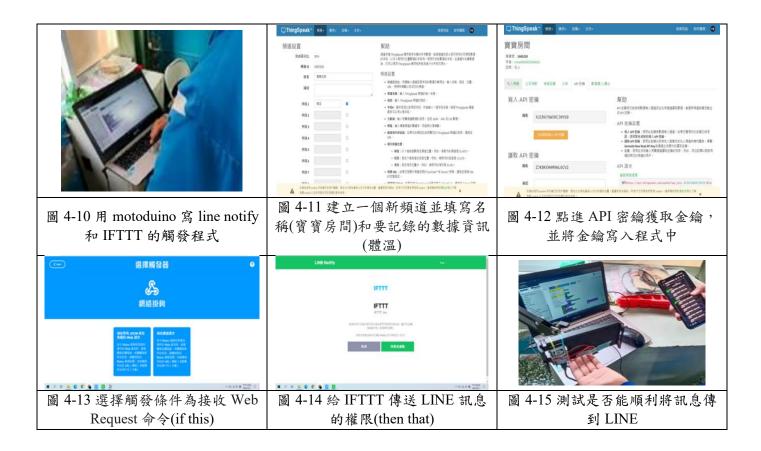
說明:室內主機可以隨意放置在家庭各處,不需要牽任何管線,透過 MQTT(Message Queuing Telemetry Transport)通訊協定就能把訊號傳到主機上,就算是老人也不用特別學習,就能得知消息。

(二)室外:利用 Thinkspeak, 24 小時監測體溫並以折線圖呈現,利用 IFTTT(if this then that)機制,將發燒通知傳到父母 LINE 群組

1.實驗原理

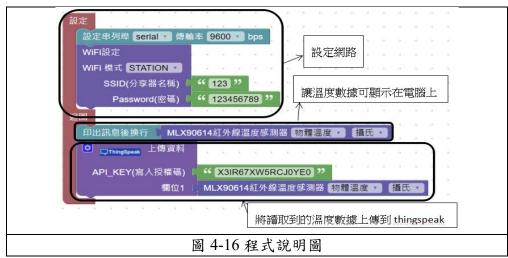
(1)IFTTT

若 XXX 進行 YYY 行為,執行 ZZZ。每一個可以觸發或者作為任務的網站叫做一個 Channel,觸發的條件叫做 Triggers,之後執行的任務叫做 Actions,綜合上面的一套流程叫做 Task。

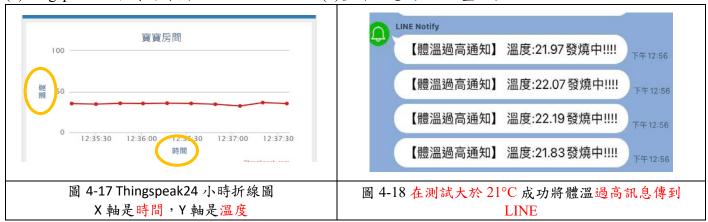

(2)Thingspeak

透過外部感測器收集資料進入 Arduino, Arduino 會將收到的資料進行篩選, 最後將資料上傳至雲端

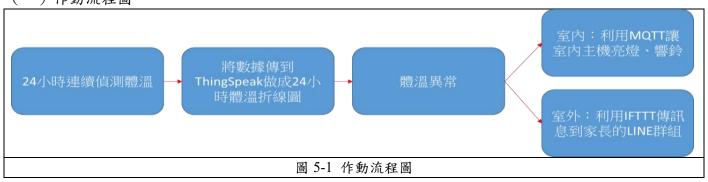
2.研究方法和步驟


- (1)利用 motoblackly 撰寫 Thinkspeak 和 IFTTT 程式
- (2)將量測的體溫計紀錄於 Thinkspeak, 繪製成 24 小時體溫折線圖(每 15 秒更新一次)
- (3)設定溫度超過 21°C(測試), ESP8266 會利用 IFTTT 將發燒訊息傳到父母 LINE 群組

3 研究步驟圖


4.研究結果

(1)程式說明


(2)thingspeak24 小時折線圖

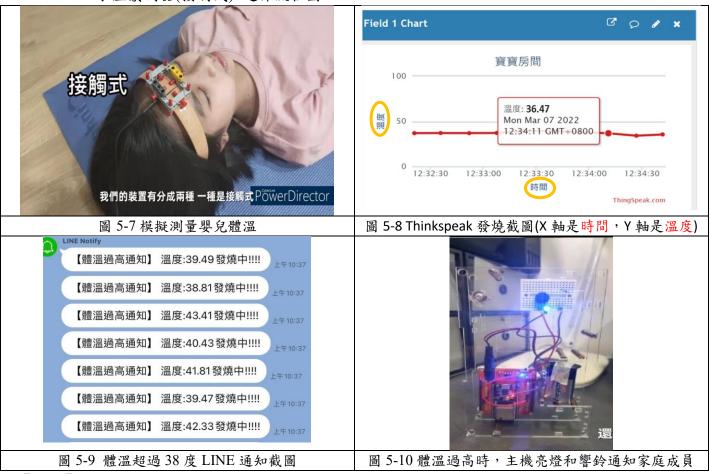
(3)室外訊息(LINE 畫面)

五、成品的運作效果

(一)作動流程圖

(二)實際運作的情況和照片

1.MLX90614 紅外線溫度感測器(非接觸式)運作流程圖



【說明】

- (1)非接觸式感測器 MLX90614 量測方式簡單,只需放置於眉心上方即可,如圖 5-2
- (2)量測到的溫度和實際體溫幾乎沒有誤差,遠端監控 Thinkspeak 數值也十分穩定,幾乎呈現水平直線,如圖 5-4
- (3)體溫過高時,此裝置會及時傳遞 LINE 訊息,以及亮燈與響鈴,如圖 5-5

2.DS18B20 水溫感測器(接觸式) 運作流程圖

【說明】

- (1)接觸式感測器 DS18B20 使用髮箍固定,後面有鬆緊帶,適合不同頭圍大小的人,還有會動來動去的大人,穿戴容易,不易脫落,如圖 5-7
- (2)量測到的溫度和實際體溫幾乎沒有誤差,遠端監控 Thinkspeak 數值也十分穩定,幾乎呈現水平直線,如圖 5-8
- (3)體溫過高時,此裝置會及時傳遞 LINE 訊息,以及亮燈與響鈴,如圖 5-9

伍、討論

一、探討市面上已有的感測體溫方式

(一)在查找文獻時,我們發現不同的文章中,寫的發燒溫度也不同

二、綜合比較 Arduino 的各種測溫感測器,並且自製能測量體溫的「測溫裝置」

- (一)原本準確度實驗是要用加熱板加熱水,再用感測器去量水溫,但後來發現加熱板溫度和實際水溫不一樣,所以最後改成直接量測加熱板
- (二)原本我們也有用額溫槍去量加熱板,結果我們發現額溫槍居然比感測器還不準
- (三)我們測溫速度本來是想用跑出一次數值要幾秒來進行實驗,但其實真正要測的應該是<mark>從沒</mark> 發燒到有發燒,感測器需要量測多少秒才對
- (四)在加熱板上蓋上外套,一方面是可以讓感測器不要受到周圍環境溫度的干擾,儘量測出加熱板實際的溫度,另一方面是模擬在衣物內測量腋溫。
- (五)因為室溫不同可能會影響到測溫誤差,所以建議之後可以做有關室溫和測溫誤差的實驗

三、製作能架設測溫裝置的「固定裝置」,找出架設位置

- (一)原本 MLX90614 是用膠帶固定,但後來發現不美觀且不穩固才改成用樂高固定
- (二)接觸式感測器我們是用髮箍來固定並測溫,但每個人的頭型不一樣,適合不同大小的髮 籍,所以可能可以用運動頭套等等其他可以適應各種頭 I 型的物品來固定感測器
- (三)雖然最後我們求出了 D=2.85×R,可以用來算最適距離,但是現實中的父母也不會為了要調整距離而去量寶寶頭的半徑,所以我們建議可使用測距感測器,可直接知道準確距離

四、將測溫裝置所測出不正常體溫資訊有效傳達給家長

- (一)我們在測試時發現,折線圖溫度顯示的會比實際溫度顯示的還要慢約15秒,是因為 Thinkspeak 限定免費的使用者每筆資料上傳時間至少需相隔15秒
- (二) MQTT 傳遞訊息,會受到免費 blroker 影響,傳輸速度較慢,之後的研究者可架設自己的 broker,傳遞訊息會更及時

五、成品的運作效果

- (一)在成品運作時,我們發現翻身時測溫結果會不準確,所以建議給有使用包巾的嬰兒使用
- (二)非接觸式感測器、接觸式感測器的裝置可能會被弄掉,所以溫度可能會升高或降低,所以可用程式設定溫度過低時也會響鈴即通知
- (三)在使用裝置時,網路一定要保持暢通,否則折線圖及發燒訊息會無法傳出
- (四)不管是接觸式或非接觸式的裝置都不是醫用的,還是以醫療級器材測得溫度為主,我們的裝置只做參考

陸、結論

一、探討市面上已有的感測體溫方式

- (一)市面上常見的測溫工具都不具備24小時連續自動偵測體溫及聯網功能、會有測量誤差
- (二) 我們決定用 arduino 自製測溫裝置,讓自製溫度計能夠 1.24 小時偵測體溫 2.遠端監控體溫情形 3.將發燒訊息傳送到相關人員的群組上。

二、綜合比較 arduino 的各種測溫感測器,並且自製能測量體溫的「測溫裝置」

- (一)DS18B20水溫感測器模組測得的溫度與實際溫度,誤差值在±1°C內,且數據十分穩定。
- (二)MLX90614溫度感測器測得的溫度與實際溫度,誤差值在±1℃之內,且數據十分穩定。
- (三)接觸式感測器速度第1名:DS18B20水溫感測器模組
- (四)非接觸式感測器速度第1名:MLX90614溫度感測器
- (五) 最後我們選擇的非接觸式感測器是 MLX90614,接觸式感測器是 DS18B40 水溫感測器模組

三、製作能架設測溫裝置的「固定裝置」,找出架設位置

(一)接觸類型感測器(DS18B20)的架設方法和位置 用髮箍、塑膠瓦楞板、橡皮筋製作固定感測器(DS18B20)的頭套來測量額溫,(如圖 6-1) (二)非接觸類型感測器(MLX90614)的架設方法和位置

將 MLX90614 用樂高零件架設在支架上,最適擺放位置的函數為 D=2.85×R (D:感測器到水面的高度,R=容器半徑)(如圖 6-2)

四、將測溫裝置所測出不正常體溫資訊有效傳達給家長

利用 motoblocky 寫程式, Arduino esp32 的聯網功能以及 mqtt 通訊協議等低成本甚至免費的資源,製作出可以在小嬰兒發燒時,可以將訊息透過可以亮燈響鈴的室內主機、以及 line 訊息通知兩種管道有效傳達給家長的裝置。

五、成品的運作效果

24 小時體溫監控並用 Thinkspeak 繪製體溫折線圖,體溫過高時,室內主機亮燈、響鈴,室外用 ifttt 傳訊息通知家長

- (一) 利用 DS18B20 和 MLX90614 24 小時偵測體溫,運行成功,數值穩定且準確
- (二)再將體溫狀況,傳到雲端 Thinkspeak 監測
- (三)將發燒訊息有效傳到室內主機和室外的 LINE 群組

柒、參考文獻資料

一、書籍

(一)作者:徐瑞茂、林聖修 出版日期: 2021/01/04 書名:用 Arduino 輕鬆入門 物聯網 IoT 實作應用:使用圖形化 motoBlockly 程式語言 出版社:台科大

二、參考網站

- (-)IFTTT: https://ifttt.com/explore
- (二)Thinkspeak:https://thingspeak.com/
- (三)Motoduino:https://www.motoduino.com/
- (四)MQTT 介紹 https://swf.com.tw/?p=1002
- (五)ESP32 介紹 https://makerpro.cc/2020/06/esp32-review-and-why-recommend-nodemcu-32s/
- (六)市面上的測溫方式介紹 https://www.edh.tw/article/24185/2
- (七)line notifyhttps://notify-bot.line.me/zh TW/
- (\land)Arduinohttps://www.arduino.cc/
- (九)MLX90614https://reurl.cc/jkobAM
- (+)LM35https://makerpro.cc/2018/09/temperature-sensor-lm35/
- (+-)DS18B20https://reurl.cc/GoOM1G
- (+=)MAX6675<u>https://reurl.cc/12qrMG</u>
- (十三)Rhino 雷切 https://www.rhino3d.com/tw/

【評語】032813

- 本作品開發一套利用開發板搭配接觸式及非接觸式溫度傳感器之自動體溫監控裝置,用以監控嬰兒的體溫,並適時發出警示訊息,具有實用價值。
- 2. 研究目標為24小時連續體溫監控並具聯網功能。
- 3. 實驗結果溫度量測誤差比市面溫度計約 0.2 度高出很多。額 溫與腋溫都有系統性低於真實體溫,是否可以校正減少誤 差?
- 4. 温度數位化後傳輸數據就不是很特殊的研究問題了。
- 5. 測量溫度的反應時間要說明更清楚。

作品簡報

「燒」縱即「視」-家用體溫監測系統

Cory & High Schoo

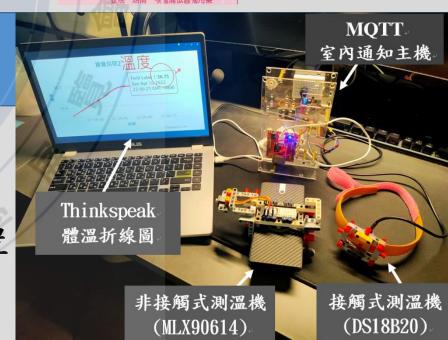
科別:生活與應用科學(一)

組別:國中組

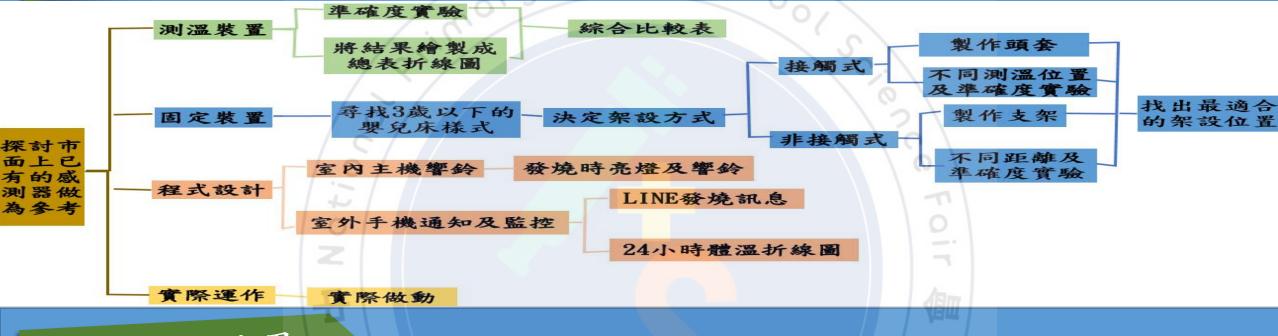
子

壹、動機與目的

- 1. 因為聽父母說小時候我們發燒時都會一直哭,父母親晚上要一直起來幫我們量體溫。
- 2. 再加上現在新冠疫情,如果小嬰兒染疫後也會發燒,需要時常量體溫也造成許多不便
- 3. 而在上網查尋資料後,發現體溫監測系統大部分都是運用在醫院,價格昂貴且不普及。
- 4. 所以我們想自製一個成本低,能24 小時監控體溫,在實實發燒時也能有效通知家長的裝置。


貳、研究問題

- 一、探討市面上已有的感測體溫方式
- 二、綜合比較Arduino的測溫感測器,自製能測量體溫的「測溫裝置」
- 三、製作能架設測溫裝置的「固定裝置」,並找出架設位置四、將測溫裝置所測出不正常體溫資訊有效傳達給家長 五、成品的運作效果

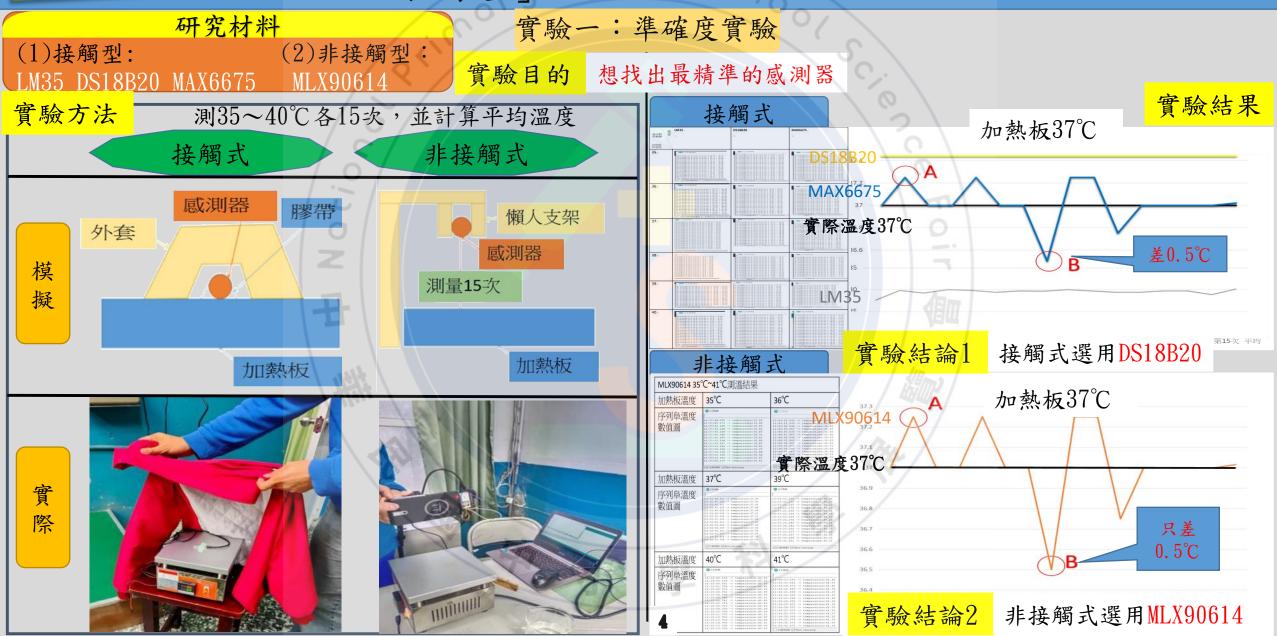


價格昂貴

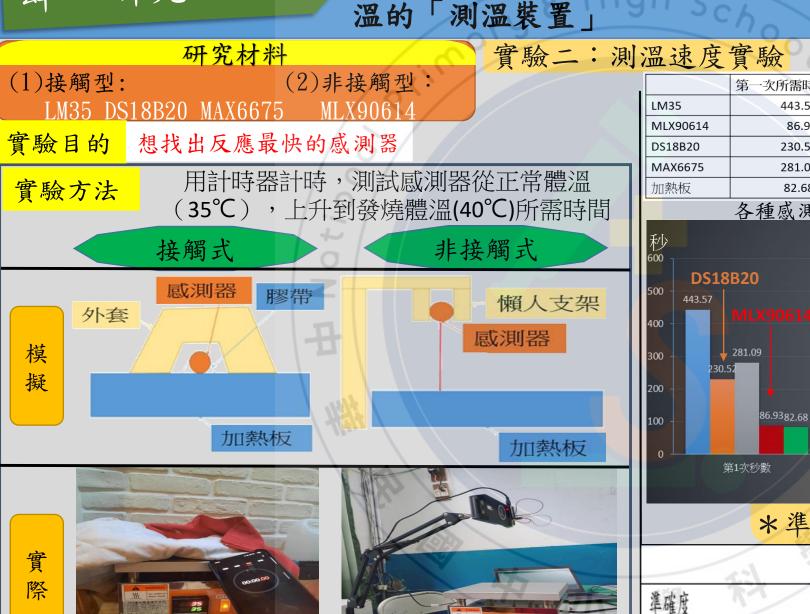
參、研究過程與方法

肆、研究結果

一、探討市面上已有的感測體溫方式



	1.額溫	2.耳溫	3.腋溫	4.口溫	5.肛溫
24小時連續 自動偵測體溫	Х	X	X	х	Х
聯網	Х	X	X	X	X
測量時間	約3秒	約3秒	3分鐘以上	電子溫度計1分 水銀溫度計2~5分	電子溫度計1分 水銀溫度計1~3分
誤差值	±0.5度	±0.3度	±0.2度	±0.2度	±0.2度


作品功能

- (1)能夠24小時偵測體溫
- (2)遠端監控體溫情形
- (3)將發燒訊息傳送到相關人員的群組。

二、綜合比較Arduino的各種測溫感測器,並且自製能測量體溫的「測溫裝置」

二、綜合比較Arduino的各種測溫感測器,並且自製能測量體

		第一次所需時間(秒)	第二次所需時間(秒)	第三次所需時間(秒)	平均所需時間(秒)		
ı	LM35	443.57	483.49	446.21	457.76		
ı	MLX90614	86.93	81.63	89.49	86.02		
ı	DS18B20	230.52	204.37	264.16	233.02		
ı	MAX6675	281.09	303.14	272.53	285.59		
ı	加熱板	82.68	78.64	83.11	81.35		
ı	夕任中国思从25001月到11000公司西从时期						

實驗結果

各種感測器從35°C上升到40°C所需要的時間 35°C~40°C所需時間

*準確度和測溫速度綜合比較表

431	LM35	DS18B20	MAX6675	MLX90614
準確度	不穩定、不準確	穩定 準確	不穩定、準確	穩定 準確
平均測溫一次所需時間(秒)	457.33	232.67	285.33	<mark>85.97</mark>

三、製作能架設測溫裝置的「固定裝置」,並找出架設位置

安岭去

實驗一:接觸型感測器DS18B20的架設方法和位置

實驗結果

實驗去R

研究材料

1. DS18B20水溫感測器模組

酒精溫度計量腋溫

2. 電子溫度計

DS18B20量額溫

實驗方法

先用電子溫度計測量實驗對象體溫,感測 器分別從額頭、腋下測量體溫

DS18B20量腋溫

酒精溫度計真實腋溫(°C) (對照組)		貝-成-省-八	貝似有口
		36.6	36.3
DS18B20 量測	15 筆測溫平均	35.5	35.35
版温	是否有不適感	有	有
(實驗組1)	實驗組和對照組溫 度差距	<u></u>	0.95
DS18B20 量測 額溫	15 筆測溫平均	34.63	34.15
	是否有不適感	無無	無
(實驗組 2)	實驗組和對照組溫 度差距	1.97	2.15
	實驗組1、實驗	★組2和對照組之關係區	

實驗去A

(1)多數實驗者反應實驗組1

(**量測腋溫**)有些許不適感 (2)決定使用實驗組2(戴頭

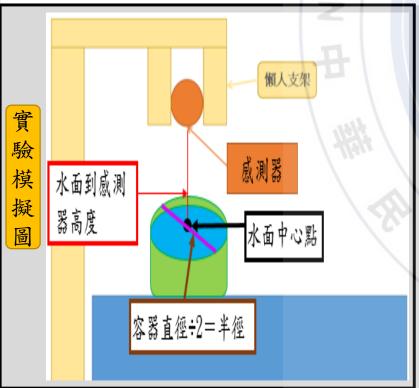
套量測腋溫),並用程式調整溫差

實際

模

擬

6


三、製作能架設測溫裝置的「固定裝置」,並找出架設位置

實驗二:非接觸型感測器MLX90614的架設方法和位置

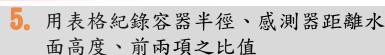
研究材料

- 1. MLX90614紅外線溫度感測器
- 2. 2. 懶人支架 3. 容器

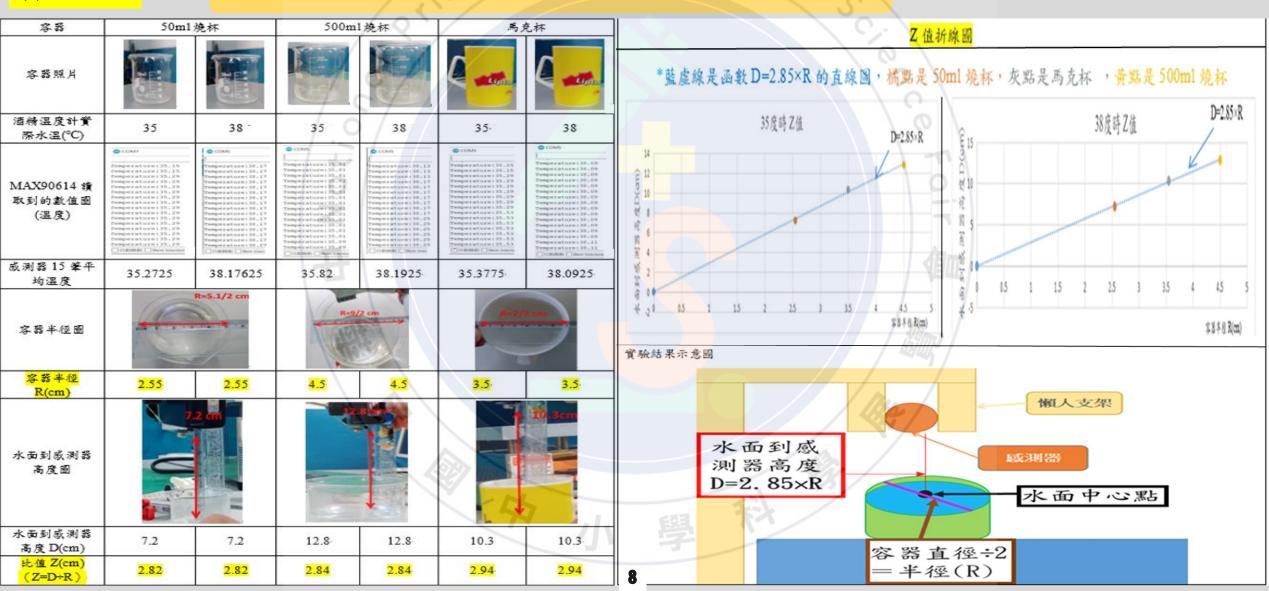
實驗目的 MLX90614與待測物距離太近,溫度會太高;距離太遠,溫度會太低,所以想找出最佳的測溫距離。

研究流程 準備三種容器,分別裝入35、38℃的水,紀錄感測器量到實際水溫時,水面到感測器的距離、容器半徑

1。用樂高零件架設非接觸型 感測器(MLX90614)



2. 將樂高與MLX90614裝在 支架上


4. 調整MAX90614距離水的高度,直到量 出接近實際水溫的溫度 7

三、製作能架設測溫裝置的「固定裝置」,並找出架設位置

實驗結果

實驗二:非接觸型感測器MLX90614的架設方法和位置

組裝電路和外殼

四、將裝置所測出不正常體溫資訊有效傳達給家長

室內:自製主機,利用MQTT通訊協定亮燈和響鈴通知家庭成員 研究結果 研究流程 Subscribed to "temperature" topic PC/Laptop Published data (28°C) Temperature Sensor on "temperature" topic MQTT 記憶器/EEPROMI **Broker** 内部標面系統/SPIFFS Publish Subscribed to 'temperature" topic temperature data (e.g. 28°C to "temperature" topic 圖 E 0 0 E 6 C O E Published data (28°C) on "temperature" topic 如果用戶端(subscriber)收到 連接到雲端伺服器 溫度過高的訊息,讓 led 閃 Mobile (mgtt broker) . . 爍以及蜂鳴器鳴叫,若溫度 正常,則不作動。。 未發燒 發燒中 蜂鳴器(響鈴) 室 Led(亮燈) 2。雷切壓克力板作主機外殼 。畫室內主機設計圖 ESP32(聯網) 說 明 9V 電池(供電) 圖

用motoduino寫主機程式

四、將裝置所測出不正常體溫資訊有效傳達給家長

五、成品的運作效果

伍、結論

- 一、探討市面上已有的感測體溫方式
- (一)市面上常見的測溫工具都不具備24小時連續自動偵測體溫及聯網功能、會有測量誤差
- 二、綜合比較arduino的各種測溫感測器,並且自製能測量體溫的「測溫裝置」
- (一) DS18B20、MLX90614測得的溫度與實際溫度,誤差值在±1℃內,且數據穩定。
- (二)我們選擇的非接觸式感測器是MLX90614,接觸式感測器是DS18B20
- 三、製作能架設測溫裝置的「固定裝置」,找出架設位置
- (一)接觸類型感測器(DS18B20)用髮箍、塑膠瓦楞板、彈性鬆緊帶製作固定的頭套來測量額溫
- (二)非接觸類型感測器(MLX90614) 用樂高零件架設在支架上,最適擺放位置的函數為D=2.85×R(D:感測器到水面的高度,R=容器半徑)
- 四、將測溫裝置所測出不正常體溫資訊有效傳達給家長

用motoblocky寫程式, Arduino esp32的聯網功能及MQTT通訊協議等資源,做出可在嬰兒發燒時,透過<mark>亮燈響鈴的室內主機、24小遠端監控的ThingSpeak</mark>畫面和Line發燒訊息通知家長。

五、成品的運作效果

運行成功,數值穩定且準確

非接觸式感測器測溫裝置

