中華民國第62屆中小學科學展覽會作品說明書

國中組 化學科

佳作

030209

3D 紙片離心機在混合物分離的應用

學校名稱:臺南市立建興國民中學

作者: 指導老師:

國三 林容宇 許慧真

林啟鴻

關鍵詞:離心機、3D 列印、混合物分離

壹、摘要

準備科展題目時,搜尋到紙片離心機,該設備利用旋轉紙張圓盤達到高速的分離效果,以此裝置協助非洲疾病盛行地區進行血液離心及分析。

以紙片離心機為主題,實驗設計探討紙張材質,尺寸及重量;線的材質及長度;孔的 數量及距離,採取不同方式組合測量紙張圓盤轉速,實驗結果以西卡紙為材質,半徑4或5 公分,重量約10.0公克,孔的數量為2或3孔,孔距1.0公分,轉速較高效果較好。

西卡紙裁剪後規格無法一致,決定採 3D 列印製作出圓盤,以手動方式轉動毛細管吸入之不同澱粉或鴨趾草混合液,進行離心分離及分析。

實驗結果顯示,3D列印圓盤高速轉動後可將混合液中固相與液相分離,未來希望可以比較3D列印圓盤結合毛細管,在分析化學上進行更廣泛的應用。

貳、前言

一、研究動機:

從小學至今的學習過程中,常出現毛細現象及色層分析的相關實驗,我們常被豐富而 鮮豔的顏色分層所吸引,隨著年紀的增加,學到質譜儀、氣相層析等分析的化學知識,準備 科展題目時,便以分析化學方向著手進行。

史丹佛大學團隊 Manu Prakash 說:「在全球公共醫療條件上,商業型離心機是昂貴的,體積笨重,而且需要電力供應,因此在分散管理,免電池的即時血糖檢測診療裝置的發展上,就變成危急的瓶頸」。有這樣的發想,主因是非洲一些建設較落後的地區,疾病及愛滋病盛行,造成罹病及死亡率增加,為了進行相關醫療,必須進行血液分析,通常會用到高速離心機,對血液進行分離及分析;然,部分地區因為電力條件不足,造成昂貴的離心機無法使用,甚至淪為門擋,因此,科學家們以發明家的精神,研發出「紙片離心機(paperfuge)」,利用 0.2 美金的圓形紙片,以手動的方式進行高速旋轉,最高轉速甚至可以達到 125000rpm,在 1~2 分鐘內完成血液分離並達到可以進行分析的結果。

搜尋到這樣的資訊,引起我們高度注意,與老師討論後,決定以紙片離心機為主題,探討圓形紙盤較佳的旋轉條件,並發揮 maker 的精神,以 3D 列印圓盤取代紙盤,比較澱粉加碘液、乙醇加鴨趾草、丙酮加鴨趾草等三種混合液的分離效果,未來希望可以進行更廣泛的應用,比較 3D 列印圓盤結合毛細管,在分析化學上的不同應用。

二、研究目的:

與指導老師討論後,決定以下研究目的:

- 1.紙張材質對旋轉條件的影響。
- 2.線的材質對旋轉條件的影響。
- 3.紙張尺寸對旋轉條件的影響。
- 4.孔的位置,數量對旋轉條件的影響。
- 5.不同規格的 3D 列印圓盤對旋轉轉速的影響。
- 6.3D 列印圓盤旋轉後,對混合液中,固相與液相分離的效果。
- 7.探討 3D 列印圓盤,在高速旋轉條件下,更廣泛的應用。

三、文獻探討:

(一)離心機原理:

離心機是一種機械,可藉由電動機或其他機械的帶動而高速轉動,產生數千倍於重力的離心力,以加快液體中顆粒的沉降速度,把樣品中不同沉降系數和密度質量的物質分離。 離心力的大小,由轉動速度、旋轉半徑以及物質質量而決定。

資料來源:維基百科

(二)離心力計算:

1.相對離心力(RCF, relative centrifugal force),以重力加速度 g 的倍數來表示;

2.rpm 表示離心機每分鐘的轉數。

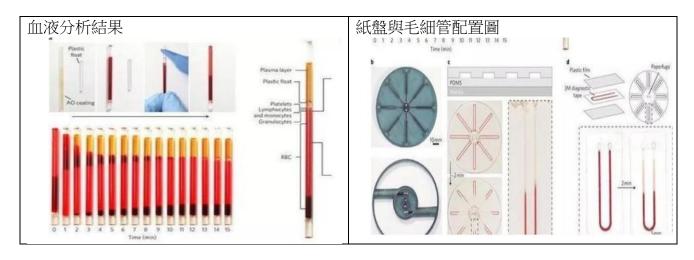
3.rpm 與 g 之間的換算公式為:RCF =1.119*10⁻⁵ *rpm² *r

其中r表示離心機轉軸中心與離心管中心的距離,單位為公分,離心管的位置由轉子決定。

資料來源:維基百科

(三)離心機分離原理分類:

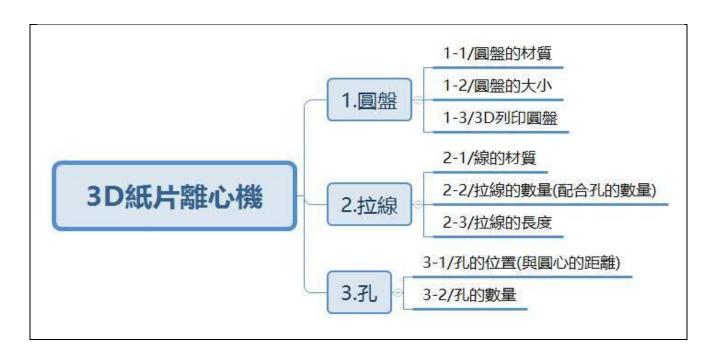
離心機是利用離心力,分離液體與固體顆粒或液體與液體的混合物中各組分的機械。離心機主要用於將懸浮液中的固體顆粒與液體分開,或將乳濁液中兩種密度不同,又互不相溶的液體分開(例如從牛奶中分離出奶油);它也可用于排除濕固體中的液體,例如用洗衣機甩幹濕衣服;特殊的超速管式分離機還可分離不同密度的氣體混合物;利用不同密度或粒度的固體顆粒在液體中沉降速度不同的特點,有的沉降離心機還可對固體顆粒按密度或粒度進行分級。


選擇離心機須根據懸浮液(或乳濁液)中固體顆粒的大小和濃度、固體與液體(或兩種液體)的密度差、液體粘度、濾渣(或沉渣)的特徵,以及分離的要求等進行綜合分析,滿足對濾渣(沉渣)含濕量和濾液(分離液)澄清度的要求,初步選擇採用哪一類離心分離機。然後按處理量和對操作的自動化要求,確定離心機的類型和規格,最後經實際試驗驗證。

通常,對於含有粒度大于 0.01 毫米顆粒的懸浮液,可選用過濾離心機;對於懸浮液中 顆粒細小或可壓縮變形的,則宜選用沉降離心機;對於懸浮液含固體量低、顆粒微小和對液 體澄清度要求高時,應選用分離機。

資料來源:華人百科

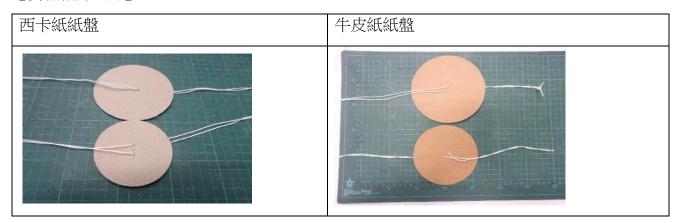
3


(四)紙片離心機分離效果:

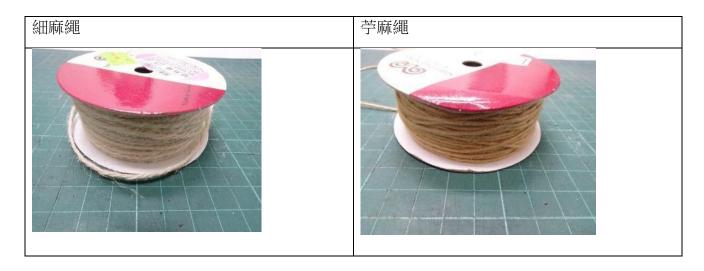
資料來源: 痞客幫

參、研究過程與方法

【實驗架構】



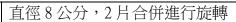
一、實驗一:較紙張材質對旋轉條件的影響。

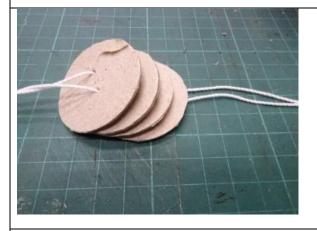

1.取西卡紙,裁成直徑6公分的圓盤,劃出一條直徑,在距離圓心1公分處,以鑽子鑽出兩個圓孔,再取一條棉線,穿過兩個圓孔後打結,兩手捉住兩端,旋轉西卡紙紙盤,拉動拉線,觀察西卡紙紙盤的旋轉條件,紀錄並進行分析。

- 2.重複步驟 1,將西卡紙紙盤,改成牛皮紙紙盤,觀察牛皮紙紙盤的旋轉條件,紀錄並進行分析。
- 3.重複步驟 1,分別將紙盤材質改成瓦楞紙及珍珠板,觀察旋轉條件,紀錄並進行分析。

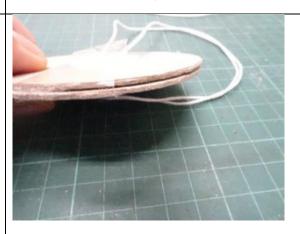
【實驗相片記錄】

- 二、實驗二:比較線的材質及長度對旋轉條件的影響。
- 1.取實驗一步驟 1 的西卡紙紙盤,拉線的材質改成細麻繩、中國繩、釣魚線、鬆緊帶、塑膠棉繩及苧麻繩。
- 2.比較觀察旋轉條件,記錄並進行分析。
- 3.步驟1的西卡紙紙盤,將棉線長度改爲30公分,40公分,50公分,比較旋轉條件並進行分析。





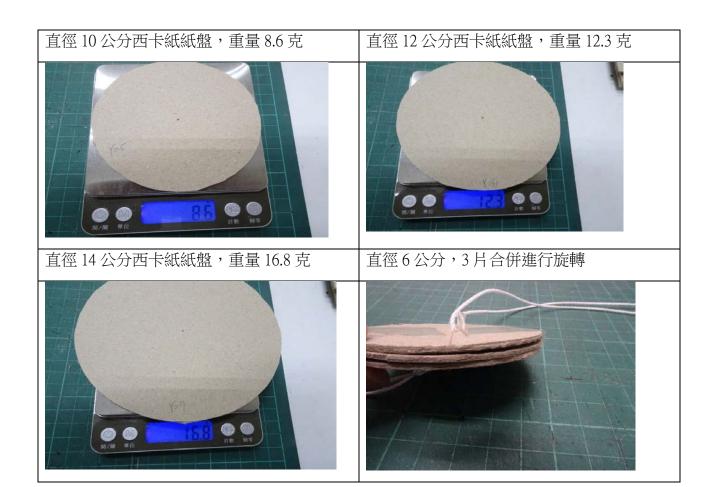
三、實驗三:比較紙張尺寸對旋轉條件的影響。


- 1.取實驗一步驟 1 的西卡紙紙盤,將紙盤直徑改成 4 公分、6 公分、8 公分、10 公分、12 公分及 14 公分。
- 2.取棉線作為拉線,孔的距離為2公分。
- 3.如果紙盤不易旋轉,再貼上相同尺寸及孔距的西卡紙紙盤,直到可以順利旋轉紙盤為止。
- 4.比較觀察旋轉條件,記錄並進行分析。

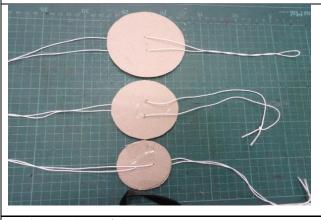
直徑4公分,4片合併進行旋轉

直徑8公分,合併2片進行旋轉

直徑 4 公分西卡紙紙盤,重量 1.4 克

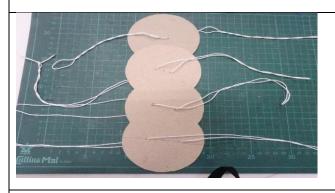

直徑6公分西卡紙紙盤,重量3.2克

直徑8公分西卡紙紙盤,重量5.6克



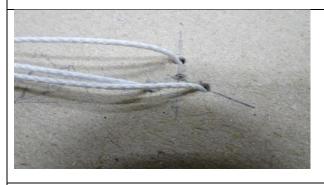
四、實驗四:比較孔的位置,數量對旋轉條件的影響。

1.實驗一步驟1的西卡紙紙盤,在距離圓心1公分處,將孔的數量改爲2孔、3孔及4孔, 比較觀察旋轉條件,記錄並進行分析。

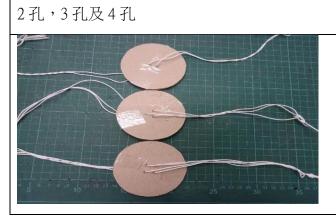

2.再取步驟一的西卡紙紙盤,將孔的距離改成 1 公分、2 公分及 3 公分,比較觀察旋轉條件,記錄並進行分析。

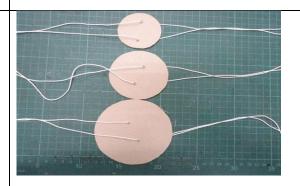
西卡紙紙盤,直徑6公分、8公分及10公分 西卡紙紙盤,直徑10公分,2孔、3孔及4孔

西卡紙紙盤,直徑10公分,2孔,孔距1公 分,2公分,3公分及4公分

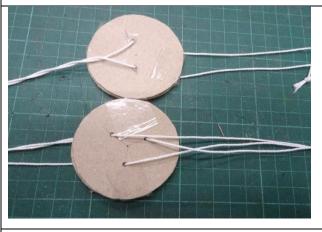

2 孔示意圖

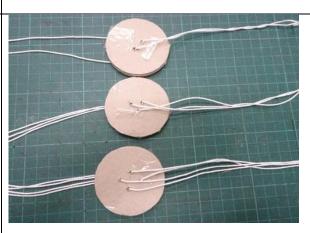
3 孔示意圖


4 孔示意圖

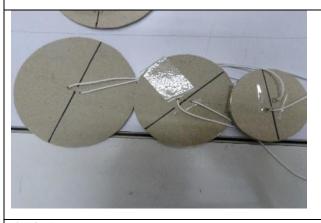


西卡紙紙盤,直徑8公分,孔距1公分

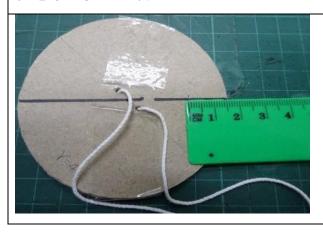

西卡紙紙盤,孔距4公分,直徑6公分,8 公分及10公分



直徑6公分,孔距2公分,2孔及3孔

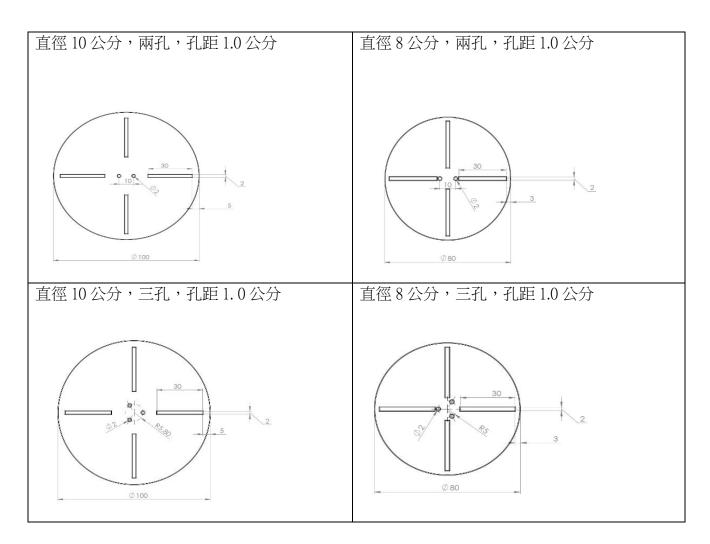

直徑6公分,孔距1公分,2孔,3孔及4孔

西卡紙紙盤,直徑6公分,8公分及10公分 孔距1公分

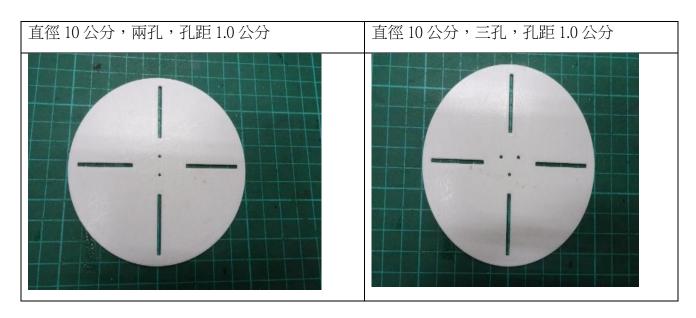

轉速計

在邊緣量取 1.5 公分

以美工刀裁出缺口,方便記錄轉速

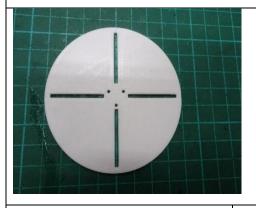


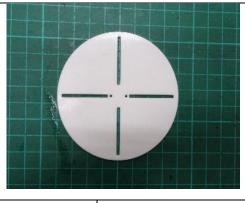
五、實驗五:比較不同規格的 3D 列印圓盤對旋轉轉速的影響。


1.從實驗一到實驗四的實驗結果比較,得到紙盤的尺寸,以直徑 8 公分及 10 公分較佳, 孔的 距離以距圓心 1 公分較佳, 孔的數量與 2 孔及 3 孔較佳。

2.根據步驟 1 的實驗結果記錄,將紙盤的材質,改成 3D 列印圓盤,完成的設計圖如下:

3.3D 列印圓盤設計圖:




4.取轉速計,旋轉 3D 列印圓盤,紀錄 3D 列印圓盤的轉速,記錄並進行分析。

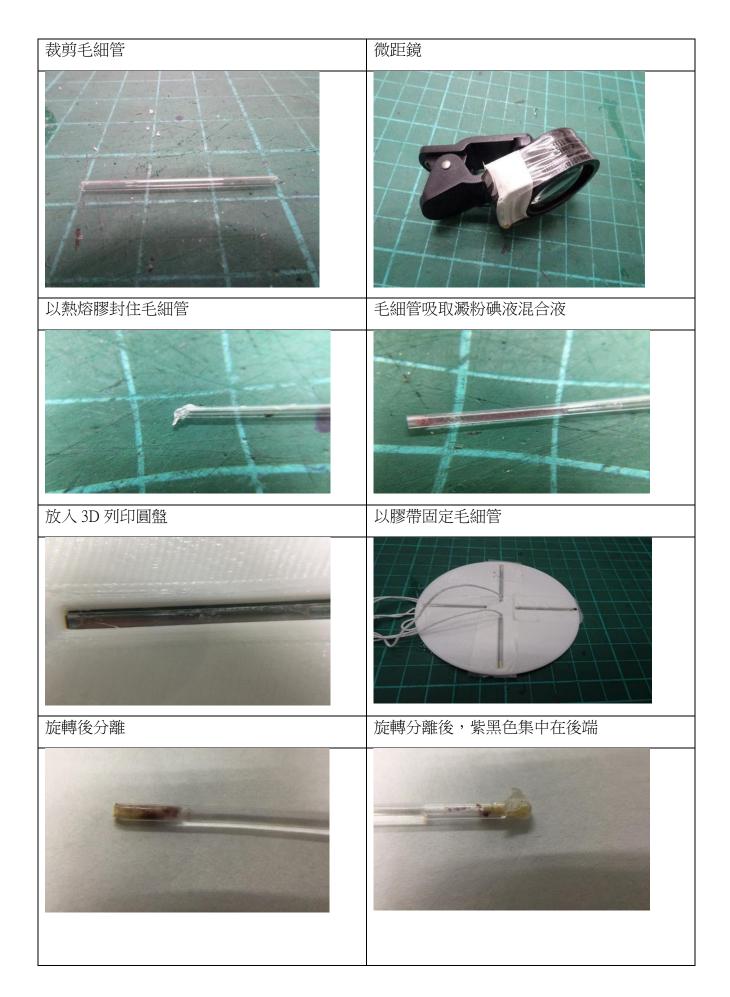
直徑8公分,三孔,孔距1.0公分

直徑8公分,兩孔,孔距1.0公分

直徑10公分,兩孔,孔距1.0 公分,重量10.0克

公分重量 10.0 克

直徑 8 公分,三孔,孔距 1.0 直徑 10 公分,三孔,孔距 1.0 公分重量 10.4 克


六、實驗六:3D列印圓盤旋轉後,對混合液中,固相與液相分離的效果。

1.取直徑 10 公分,2 孔的 3D 列印圓盤,將毛細管裁成3公分。

2.取澱粉液加入碘液, 攪拌混合均匀, 以毛細管吸取混合液, 再以熱熔膠封住兩端, 放入 3D 列印圓盤的凹槽內,以透明膠帶固定,再取3隻毛細管,以相同作法完成後,放入其他3個 凹槽內,進行測試。

3.以手動方式旋轉 3D 列印圓盤, 高速轉動 90 秒後, 停止旋轉紙盤, 觀察毛細管的分離條 件,並進行分析。

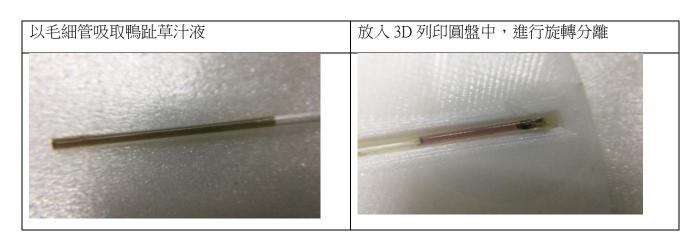
4.重複步驟 2,取鴨跖草葉子,搗碎研磨成汁,分別混合乙醇及丙酮,進行測試,觀察毛細 管內的分離條件,並進行分析。

集中並分層 旋轉分離後,產生分層的效果

旋轉分離後,產生分層的效果

鴨趾草

鴨趾草以剪刀剪碎



以研缽搗碎

鴨趾草搗碎成汁

肆、實驗結果與討論

一**、實驗結果說明-1**:拉線材質與西卡紙紙盤,測試紙盤旋轉條件

1.實驗條件說明-1:

拉線材質	拉線長度	紙盤材質	紙盤直徑	孔數	孔距
縫衣線/棉線/細麻繩/中國繩/釣魚線/	40 公分*2(2	西卡紙	12 公分	2孔	2公分
鬆緊帶/塑膠繩/苧麻繩	條)				

2.實驗結果整理-1:

拉線材質	旋轉條件說明	採用
縫衣線	無法旋轉,拉線會互相纏繞,排除縫衣線作為拉線	*
棉線	經過幾次嘗試後,西卡紙紙盤旋轉非常順暢,轉速快	~
細麻繩	可以讓西卡紙紙盤旋轉,經過幾次嘗試後,速度較棉線慢許多,排除細麻繩作為拉線	*
中國繩	無法讓西卡紙紙盤旋轉,排除中國繩作為拉線	*
釣魚線	無法讓西卡紙紙盤旋轉,排除釣魚線作為拉線	*
鬆緊帶	無法讓西卡紙紙盤旋轉,排除鬆緊帶作為拉線	*
塑膠繩	可以讓西卡紙紙盤旋轉,但是經過幾次旋轉後,塑膠繩會發生分叉,排除塑膠繩作爲拉線。	*
苧麻繩	無法讓西卡紙紙盤旋轉,排除苧麻繩作為拉線	×

3.實驗結果討論-1

(1)從實驗結果來看,棉線的旋轉結果最佳。在拉動拉線時,輕輕回放,棉線會有一個反作用力,將拉線回拉,產生重複旋轉的現象,經果幾次反覆後,西卡紙紙盤的旋轉速度會持續加快,經過,比較後,以棉線作為拉線的材質。

(2)使用釣魚線及塑膠繩作為拉線,實驗結果發現,塑膠材質的拉線,摩擦力太小,沒有辦法產生旋轉及回拉的力量,而且塑膠材質的拉線比較細,拉動時對手指頭的壓力較大,塑膠材質的拉線回放時彈力也不足,排除塑膠材質作為拉線的材質。

(3)從項次2的討論延伸,我們嘗試使用彈力較大的拉線,選用中國結及鬆緊帶作為拉線材質,實驗結果發現,彈力太大的拉線,拉線長度變化太大,在拉動時無法產生回拉力量;拉動時的力量,都用在拉線長度變化上,無法產生旋轉及回拉力量,排除鬆緊帶等彈力較大的材質作為拉線。

(4)縫衣線因為太細,與本項討論項次2,結果相同,予以排除。

(5)使用細麻繩及苧麻繩作為拉線的材質,發現西卡紙紙盤都可以旋轉,轉速較慢,比較後發現,麻繩的直徑較粗,織法與棉線不同,棉線是好幾股的細綿線纏繞成一條,麻繩則是交錯織成,容易分叉及斷裂,旋轉條件不流暢,造成轉速較慢,排除麻繩類作為拉線的材質。

(6)從材質,織法,彈力及拉動時的旋轉條件,經過討論後,以棉線作為本次科展拉線的材質。

二、實驗結果說明-2:比較拉線長度對西卡紙紙盤旋轉條件的影響

1.實驗條件說明-2:

拉線材質	拉線長度	紙盤材質	紙盤直徑	孔數	孔距
棉線	30 公分*2/40 公分*2	西卡紙	12 公分	2孔	2公分
	/50 公分*2 等共 3 種				

2.實驗結果整理-2:

拉線長度	西卡紙盤旋轉條件說明	採用
30 公分*2	30 公分拉線太短,紙盤無法旋轉,排除 30 公分拉線。	*
40 公分*2	可以讓西卡紙紙盤旋轉,旋轉速度快。	*
50公分*2	可以讓西卡紙紙盤旋轉,旋轉速度更快。	~

3.實驗結果討論-2:

(1)從實驗結果判斷,50公分*2的拉線長度,因為符合國中生的身高及肩寬,拉動時動作較流暢,轉速較快,拉線長度與身高有相關性,本次科展以50公分*2作為拉線的長度。

三、實驗結果說明-3:比較不同紙盤材質,對紙盤旋轉的影響。

1.實驗條件說明-3:

拉線材質	拉線長度	紙盤材質	紙盤直徑	孔數	孔距
棉線	50 公分*2	西卡紙/牛皮紙/瓦楞紙/珍	12 公分	2孔	2公分
		珠板			

2.實驗結果整理-3:

紙盤材質	西卡紙盤旋轉條件說明	採用
西卡紙	西卡紙紙盤旋轉條件順暢,紙盤旋轉速度快。	~
牛皮紙	牛皮紙紙盤旋轉條件略為順暢,因爲紙盤重量較輕,紙盤旋轉速度較 慢,排除牛皮紙作爲紙盤材質。。	*
瓦楞紙	瓦楞紙紙盤因邊緣較不平順,旋轉條件較差,速度較慢,排除瓦楞紙 作爲紙盤材質。	*
珍珠板	珍珠板因爲重量較輕,旋轉條件較差,速度也較慢,排除珍珠板作爲 紙盤材質。	×

3.實驗結果討論-3:

- (1)在本次科展中,紙盤的材質選用西卡紙、牛皮紙、瓦楞紙及珍珠板四種,實驗結果發現, 以西卡紙紙盤的旋轉條件較佳,以西卡紙作為紙盤的材質,進行後續的實驗。
- (2)使用牛皮紙時,發現牛皮紙較光滑,摩擦力較小,與棉線旋轉時,無法產生較大的摩擦力,與瓦楞紙及珍珠板相比,旋轉條件較佳,經過討論後,排除牛皮紙作為紙盤的材質。
- (3)使用瓦楞紙作為紙盤的材質,實驗結果發現,瓦楞紙因為中間有空隙,剪裁成圓形後,實際上結構並不對稱,邊緣也不整齊,轉動條件較差,速度較慢,經過討論後,排除瓦楞紙作為旋轉紙盤材質。
- (4)使用珍珠板作為紙盤的材質,實驗結果發現,珍珠板裁剪容易,但是,珍珠板重量較輕, 而且與棉線經過幾次拉動後,發現孔的大小會改變,摩擦力也較小,旋轉條件較不順暢,排 除珍珠板作為旋轉紙盤的材質。
- (5)從重量、形狀、重量的對稱、裁剪的容易程度、摩擦力、及旋轉條件因素判斷,將排除牛 皮紙、瓦楞紙及珍珠板作為旋轉紙盤的材質。旋轉紙盤的材質以西卡紙最佳,以西卡紙作為 旋轉紙盤的材質,進行後續的實驗。

四、實驗結果說明-4】比較西卡紙盤,在不同尺寸下的旋轉條件比較。

1.實驗條件說明:

拉線材質	拉線長度	紙盤材質	紙盤直徑	孔數	孔距
棉線	50 公分*2	西卡紙/牛	14公分/12公分/10公分	2孔	2 公分
		皮紙	8 公分/6 公分/4 公分		

2.實驗結果整理-4-1:紙盤材質/西卡紙

紙盤直徑	數量	紙盤旋轉條件說明	採用
14 公分	1	旋轉條件較差,速度較慢,排除。	×
12 公分	1	可以旋轉,但是旋轉速度較慢,排除。	×
10 公分	1	旋轉順暢,旋轉速度快,容易操作。	~
	1	旋轉順暢,旋轉速度快,容易操作。	~
8公分	2	旋轉更順暢,速度更快。	~
	3	旋轉速度變慢,無法順利進行旋轉。	*
	1	可以旋轉,但是因爲重量較輕,旋轉條件較差,無法持續旋	×
		轉,排除。	•
6公分	2	可以旋轉,旋轉條件順暢,速度較快。	~
	3	可以旋轉,旋轉條件接近直徑 10 公分。	~
	4	厚度太厚,紙盤無法順利旋轉。	×
	1	無法旋轉,排除。	×
	2	無法旋轉,排除。	×
4公分	3	可以旋轉,但旋轉條件不穩定,無法持續旋轉,排除。	×
	4	直徑4公分紙盤4片,可以旋轉,但旋轉條件不穩定,無法持	×
		續旋轉,排除。	•

3.實驗結果整理-4-2:西卡紙紙盤重量紀錄

紙盤直徑	4公分	6公分	8公分	10 公分	12 公分	14 公分
紙盤重量	1.4 克	3.2 克	5.6 克	8.6 克	12.3 克	16.8 克
較佳旋轉條件片數	排除	3片	2月	1片	排除	排除
較佳旋轉條件	排除	9.6 克	11.2 克	8.6 克	排除	排除
紙盤重量						

4.實驗結果討論-4:

- (1)從實驗結果發現,西卡紙紙盤的尺寸會影響實驗條件,直徑 14 公分及 12 公分西卡紙紙盤的旋轉條件,與直徑 10 公分相比,西卡紙紙盤旋轉條件較差,先排除直徑 14 公分及 12 公分的西卡紙紙盤。
- (2)直徑 10 公分的西卡紙紙盤,在只有一片的實驗條件下,旋轉條件較佳。
- (3)直徑 8 公分的西卡紙紙盤,旋轉條件較直徑 14 公分及 12 公分為佳,較 10 公分略差。在討論過程中,思考除了直徑外,西卡紙紙盤重量是否為變數之一,於是,在直徑 8 公分的實驗中,再加上一片西卡紙紙盤,比較旋轉條件,發現 2 片直徑 8 公分的西卡紙紙盤固定後進行旋轉,旋轉條件更佳,但是,加上第三片後,西卡紙紙盤的旋轉條件反而變差也變慢,直徑 8 公分的西卡紙紙盤以 2 片固定後,旋轉條件較佳。
- (4)相同的情況,在直徑6公分的西卡紙紙盤,實驗結果發現,直徑6公分的西卡紙紙盤以3 片固定後,旋轉條件較佳,固定4片時,發現紙盤厚度太厚,旋轉條件變慢也變差。
- (5)直徑 4 公分,旋轉條件均較差,予以排除。
- (6)經過比較後,發現直徑 10 公分(1 片),直徑 8 公分(2 片),直徑 6 公分(3 片)的旋轉條件較佳;再比較重量,發現直徑 10 公分 1 片(重量 8.6 克),直徑 8 公分 2 片(重量 11.2 克),直徑 6 公分 3 片(重量 9.6 克),實驗結果發現,重量在 8.6 克~11.2 克之間,旋轉條件較佳,經過討論後,取中間值,3D 列印圓盤的重量設定為 10.0 公克,進行後續的實驗。
- (7)在設計 3D 圓盤時,因為要放入毛細管,毛細管的標準長度為 10 公分,必須進行裁剪, 考量實驗條件,孔的數量及距離,以及毛細管的長度及放置空間,3D 列印圓盤的直徑設定 為 8 公分及 10 公分,排除直徑 6 公分的 3D 列印圓盤。
- (8)綜合以上討論,3D列印圓盤,以直徑8公分及10公分,重量10.0公分,進行後續實驗。

五、實驗結果說明-5:孔的數量及距離,對西卡紙紙盤旋轉條件的影響。

1.實驗條件說明:孔的數量及距離對西卡紙紙盤旋轉條件的影響

拉線材	拉線	紙盤材	紙盤直徑	孔數	孔距
質	長度	質	WVIIII. CL.	1037	1 00-1-
棉線	50公 分*2	西卡紙	10公分(1片)/8公分(2片)/6公分(3片)	2 孔/3 孔/4 孔	1公分/2公分/3公分

2.實驗結果整理-5-1: 孔距 1 公分, 西卡紙紙盤旋轉條件

孔的數量	直徑6公分(3片)	直徑 8 公分(2 片)	直徑 10 公分(1 片)
2孔	順暢	順暢	順暢
3 孔	順暢	順暢	順暢
4孔	無法持續(排除)	順暢	順暢


3.實驗結果整理-5-2: 孔距 2 公分, 西卡紙紙盤旋轉條件

孔的數量	直徑6公分(3片)	直徑 8 公分(2 片)	直徑 10 公分(1 片)
2 孔	順暢	速度較慢	速度更慢
3 孔	無法持續(排除)	速度較慢,不好轉	速度較慢
4孔	無法持續(排除)	速度更慢(排除)	速度更慢(排除)

4.實驗結果整理-5-3: 孔距 3 公分, 西卡紙紙盤旋轉條件

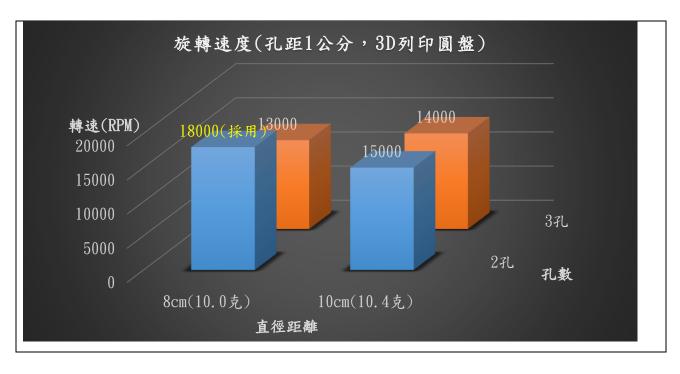
孔的數量	直徑6公分(3月)	直徑 8 公分(2 片)	直徑 10 公分(1 片)
2孔	無法旋轉(排除)	無法旋轉(排除)	可以旋轉,但轉速慢
3 孔	無法旋轉(排除)	無法旋轉(排除)	無法旋轉(排除)
4孔	無法旋轉(排除)	無法旋轉(排除)	無法旋轉(排除)

5.實驗結果整理-5-4: 孔距 1 公分, 西卡紙紙盤旋轉速度

6.實驗結果討論-5:

(1)在孔的距離與數量的實驗條件中,實驗結果發現,孔的距離 1 公分(2 孔、3 孔及 4 孔)時, 西卡紙紙盤的旋轉條件只有直徑 6 公分 3 片(4 孔)時,西卡紙紙盤無法旋轉。

(2)將孔的距離加大為 2 公分時,發現直徑 6 公分 3 片(2 孔、3 孔及 4 孔)的旋轉條件均較差, 直徑 8 公分及 10 公分,在 2 孔及 3 孔的實驗條件下,旋轉條件較佳,4 孔的旋轉條件較差, 再仔細觀察西卡紙紙盤旋轉條件,發現在 4 孔的實驗條件下,拉線的纏繞及回拉條件較複 雜,四條拉線之間會互相干擾,無法順利順暢的纏繞及回拉造成旋轉條件較差,排除4孔的實驗條件,保留2孔及3孔的實驗條件。


- (3)再將孔的距離加大為3公分時,發現西卡紙紙盤的旋轉條件變差,經過討論後,排除孔的距離3公分。
- (4)為了避免實驗設計及實驗條件太複雜,討論後,排除孔的距離2公分的實驗條件。
- (5)綜合實驗結果 1~5 及相關討論,在西卡紙紙盤的實驗條件下,以直徑 10 公分 1 片(孔的距離 1 公分,2 孔及 3 孔),直徑 8 公分 2 片(孔的距離 1 公分,2 孔及 3 孔),為較佳的實驗條件,根據以上的結論,進行 3D 列印圓盤的實驗條件設計,說明如下,直徑 10 公分及 8 公分,重量設定為 10.0 公克,孔的距離 1 公分,孔的數量分別為 2 孔及 3 孔。

六、實驗結果說明-6:3D 列印圓盤,旋轉轉速紀錄

1.實驗條件說明-6: 孔距 1 公分

紙盤	拉線材質	拉線長度	孔距	3D 列印圓盤直徑	孔數
3D 列印圓盤	棉線	50 公分*2	1.0 公分	8 公分/10 公分	2孔/3孔

2.實驗結果整理-6:

3.實驗結果討論-6:

(1)實驗結果發現,3D 列印圓盤的實驗條件,以直徑 8 公分(10.0 克),孔的距離 1 公分,2 孔的實驗條件,轉速最快,後續的旋轉離心測試,以直徑 8 公分(孔距 1 公分,2 孔)進行離心分離測試。

七、實驗結果說明-7:3D 列印圓盤,分離澱粉碘液混合液,乙醇加鴨趾草,丙酮加鴨趾草的分離效果。

1.實驗條件說明-7:

紙盤	拉線材質	拉線長度	孔數	孔距	測試混合液體
3D 列印圓盤 (10.0 克)	棉線	50公分*2	2孔	1.0公分	1.澱粉碘液混合液 2.乙醇加鴨趾草
(10.0 %)					3.丙酮加鴨趾草

2.實驗結果整理-7:

(1)實驗結果相片說明:

	澱粉碘液混合液	乙醇加鴨趾草	丙酮加鴨趾草
旋轉前			
旋轉後			

3.實驗結果討論-7:

- (1)從實驗結果來看,在3D列印圓盤(直徑8公分,重量10.0公克,孔的距離1公分,2孔,使用50公分*2的棉線),在18000rpm的實驗條件下,可以成功分離澱粉加碘液,乙醇加鴨 趾草,丙酮加鴨趾草等三種混合液,毛細管中均可以觀察到明顯分層。
- (2)在澱粉與碘液混合液中,可以看到清楚的分層,透明液體與紫色的分層中間,有明顯的界線。
- (3)在乙醇與鴨趾草的混合液中,可以看到清楚的分層,部分的固體綠色的殘渣,留在透明層,出現淡紫色的分層,因為乙醇為有機溶劑,溶解部分鴨趾草汁液後,出現兩個清楚的分層。
- (4)在丙酮與鴨趾草的混合液中,可以看到清楚的分層,固體綠色的殘渣較少,留在透明層, 出現淡紫色的分層,淡紫色分層較少,因為丙酮為揮發性更強的有機溶劑,研判是揮發性較 強,與乙醇相比,溶解部分鴨趾草汁液後,出現兩個清楚的分層,但是分層的長度較短。
- (5)因為科展的實驗條件,對於使用脊椎動物血清,有嚴格的規範及限制,基於實驗條件的控制與操作,排除使用動物體液及血清進行實驗分析,以植物的汁液進行旋轉分離並進行分析。

伍、結論

- 一、紙片離心機的相關測試中,紙盤的材質以西卡紙較佳,摩擦力較大,重量較重,旋轉條件較佳,紙片離心機以西卡紙作為紙盤的材質。
- 二、拉線材質以棉線較佳,拉動時,可以順暢的旋轉,可以產生拉緊再回放的張力,以棉線 作為紙片離心機的拉線材質。
- 三、拉線長度考量操作者的身高,以50公分*2為本次科展的拉線長度。
- 四、西卡紙紙盤的尺寸以直徑 10 公分(1 片)及直徑 8 公分(2 片)的旋轉條件較佳,西卡紙紙盤的重量以 8.6 克(直徑 10 公分 1 片)到 11.2 克(直徑 8 公分 2 片)較佳,討論將 3D 列印圓盤重量控制在 10.0 克。

五、孔的數量以2孔及3孔的旋轉條件較佳。

六、孔與圓心的距離以1公分的旋轉條件較佳。

七、綜合結論一~六,3D 列印圓盤的實驗條件如下:

以50公分*2的棉線為拉線,孔距離圓心1公分,孔的數量為2孔及3孔,直徑8公分及10公分,使用3D列印機列印3D列印圓盤,重量控制在10.0公克,在3D列印圓盤上,保留4道凹槽,放置測試毛細管,共有四個3D列印圓盤(8公分2孔、8公分3孔、10公分2孔、10公分3孔)。

八、以結論七的 3D 列印圓盤進行轉速測試,以直徑 8 公分 2 孔的轉速較快(18000rpm),以直徑 8 公分 2 孔的 3D 列印圓盤進行旋轉分離及分析。

九、測試後發現,以有機化合物(澱粉加碘液),及植物汁液(乙醇加鴨趾草,丙酮加鴨趾草),在直徑 8 公分 2 孔(18000rpm)的旋轉條件下,可以達到分離的效果,毛細管會出現透明及有顏色的分層,達到離心分離的效果,未來希望可以繼續研究,提高 3D 列印圓盤的轉速,達到更佳的分析結果。

十、實驗數據結果不像所學的向心力公式(F=MV2/R),半徑與質量有一定限制,若超過此範圍速度會變慢,猜測是因為空氣阻力所產生之影響。

陸、應用與未來展望

在台灣生活便利,不太可能有無電可用的窘境。所以當我們累積廣泛的自然科學知識後,更希望為資源匱乏的地區出份力量。

我們研究 3D 紙片離心機的目的就是希望將所學的自然科學知識與實驗結果,研究出可利用隨手可得的器材而做出穩定的工具,不僅可讓資源匱乏的區域或是醫療較落後地區可供利用,更希望能傳遞「科學其實就在我們身邊」的理念。

在本次科展,以 3D 列印圓盤取代紙盤進行離心分離,實驗裝置穩定性更高。從結果 分析來看,在實驗過程中可以看到比色層分析更清楚的分層,以及分離效果也更好,且實驗 時間也縮短。 在未來可以朝向更多有機化合物的分離,以更有效率及效果的方式進行混合物分離。 我們希望繼續調整實驗裝置,進行更高速的旋轉分離。也希望能做到進行血清的分離,以比較與高速離心機的分離效果,為醫療較落後的地區,因為環境的差異無法進行血液分析時,提供一個更穩定的解決方案。

柒、參考文獻

壹、中文部分:國民中學 自然與生活科技第五冊 南一出版社

貳、英文部分:無

參、網路資源:

【摘要及資料庫資料】沒想到小時候玩的不起眼紙片玩具,關鍵時刻還能救人一命 | 科學 DIY https://kknews.cc/zh-tw/news/pv5ez6e.html

【摘要及資料庫資料】Stanford bioengineers develop a 20-cent, hand-powered centrifuge https://www.youtube.com/watch?v=pPePaKnYh2I

【摘要及資料庫資料】關鍵評論/受玩具啟發的「人力離心機」,將幫助偏遠地區醫療人員 https://www.thenewslens.com/article/59043

【摘要及資料庫資料】新浪新聞/用1美元改變科學:1美元紙片離心機之後,「節儉科學家」又出手

https://news.sina.com.tw/article/20200927/36454864.html

【摘要及資料庫資料】讚新聞/科學家用紙跟繩子製做出 0.2 美元的離心機,誰都能自己動手做 https://hssszn.com/archives/21337

【摘要及資料庫資料】國家地理頻道/小玩具也能改善醫療,只要不到兩塊錢!

https://www.natgeomedia.com/environment/article/content-1070.html

【評語】030209

此科展作品運用 3D 列印製作出圓盤,利用手動方式旋轉紙張 圓盤上的毛細管達到高速的分離效果並探討影響分離效果的各種 因素。利用隨手可得的器材而做出簡易的工具,具有創意,若能再 增加探討用於分離之應用,或將研究的目標設計再加廣加深,將更 具價值。 作品簡報

科展主題

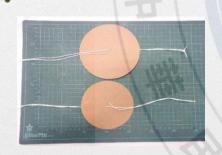
3D紙片離心機 在混合物分離的應用

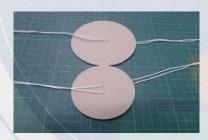
組別:國中組

科別:化學組

研究動機

有這樣的發想,主因是非洲一些建設較落後的地區,一些疾病及愛滋病盛行,造成罹病及死亡率增加,為了進行相關醫療,必須進行血液分析,通常會須使用離心機對血液進行分離及分析;然,部分地區因為電力條件不足,造成昂貴的離心機無法使用,甚至淪為門擋,因此,科學家們以發明家的精神,研發出「紙片離心機(PAPERFUGE)」。


研究目的


- 1. 紙張材質對旋轉條件的影響。
- 2. 線的材質對旋轉條件的影響。
- 3. 紙張尺寸對旋轉條件的影響。
- 4. 孔的位置、數量對旋轉條件的影響。
- 5. 不同規格的3D列印圓盤對旋轉轉速的影響。
- 6.3D列印圓盤旋轉後,對混合液中,固相與液相分離的效果。

實驗一:紙張材質對旋轉條件的影響。

採用西卡紙、牛皮紙、瓦楞紙及珍珠板進行旋轉實驗

結論:採用西卡紙進行後續實驗

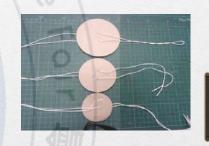
紙盤材質↩	西卡紙盤旋轉條件說明♀	採用←	Ļ.
西卡紙↩	西卡紙紙盤旋轉條件順暢,紙盤旋轉速度快。↩	/	.
牛皮紙↩	牛皮紙紙盤旋轉條件略為順暢,因爲紙盤重量較輕,紙盤旋轉速度較	X 4	<u>.</u>
12200	慢,排除牛皮紙作爲紙盤材質。。↩		
瓦楞紙↩	瓦楞紙紙盤因邊緣較不平順,旋轉條件較差,速度較慢,排除瓦楞紙	*4	←
	作爲紙盤材質。↩		
珍珠板↩	珍珠板因爲重量較輕,旋轉條件較差,速度也較慢,排除珍珠板作爲	*4	←.
	紙盤材質。↩		

實驗二:線的材質及長度對旋轉條件的影響

8種拉線材質與3種線長以西卡紙紙盤,進行測試結論:採用棉線及50cm進行後續實驗

拉線長度↩	西卡紙盤旋轉條件說明↩	採用中
30公分*2₽	30公分拉線太短,紙盤無法旋轉,排除30公分拉線。↩	*4
40公分*2₽	可以讓西卡紙紙盤旋轉,旋轉速度快。↩	*4
50公分★2←	可以讓西卡紙紙盤旋轉,旋轉速度更快。↩	1

補充實驗:比較手長與線長的關係


拉線材質↩	旋轉條件說明↩	採用
縫衣線↩	無法旋轉,拉線會互相纏繞,排除縫衣線作為拉線↩	*4
棉線←	經過幾次嘗試後,西卡紙紙盤旋轉非常順暢,轉速快中	V
細麻縄↩	可以讓西卡紙紙盤旋轉,經過幾次嘗試後,速度較棉線慢許多,排除 細麻繩作為拉線↔	*4
中國繩↩	無法讓西卡紙紙盤旋轉,排除中國繩作為拉線↔	*
釣魚線↩	無法讓西卡紙紙盤旋轉,排除釣魚線作為拉線↔	*
鬆緊帶↩	無法讓西卡紙紙盤旋轉,排除鬆緊帶作為拉線↔	*
塑膠繩↩	可以讓西卡紙紙盤旋轉,但是經過幾次旋轉後,塑膠繩會發生分叉, 排除塑膠繩作爲拉線。↩	X 4
苧麻繩↩	無法讓西卡紙紙盤旋轉,排除苧麻繩作為拉線↔	*4

實驗三:紙張尺寸與數量對旋轉條件的影響

西卡紙紙盤直徑改成4、6、8、10、12及14公分 圓盤個數1至3個進行測試

結論:採用10cm*1、8cm*2、6cm*3

8cm*1效果較8cm*2差 6cm*2效果較6cm*3差

紙盤直徑↩	數量↩	紙盤旋轉條件說明♀	採用↩	(
14 公分↩	1←	旋轉條件較差,速度較慢,排除。↩	*	(
12 公分↩	1←	可以旋轉,但是旋轉速度較慢,排除。↩	*	.
10公分↩	1←	旋轉順暢,旋轉速度快,容易操作。↩	√	÷.
	1←	旋轉順暢,旋轉速度快,容易操作。↩	√ ←	÷.
8 公分↩	2←	旋轉更順暢,速度更快。↩	√ ←	⊬.
	3←	旋轉速度變慢,無法順利進行旋轉。↩	*	÷.

	1€	可以旋轉,但是因爲重量較輕,旋轉條件較差,無法持續旋	X	=
		轉,排除。↩	•	
6公分↔	2←	可以旋轉,旋轉條件順暢,速度較快。⇔	V ←□ ←	-
	3←	可以旋轉,旋轉條件接近直徑 10 公分。↩	V ←□ ←	-
	4←	厚度太厚,紙盤無法順利旋轉。↩	*4	-
	1←	無法旋轉,排除。↩	*4	2
	2←	無法旋轉,排除。↩	*4	1
4公分←	3←	可以旋轉,但旋轉條件不穩定,無法持續旋轉,排除。↩	*←	1
	4€	直徑 4 公分紙盤 4 片,可以旋轉,但旋轉條件不穩定,無法持	*4	
	(:2	續旋轉,排除。↩	•	
4公分←	2← 3←	無法旋轉,排除。↩ 可以旋轉,但旋轉條件不穩定,無法持續旋轉,排除。↩ 直徑 4 公分紙盤 4 片,可以旋轉,但旋轉條件不穩定,無法持	*	

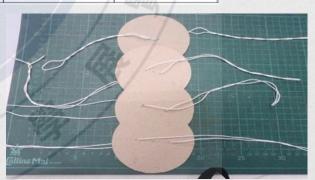
實驗四:孔的距離、數量對旋轉條件的影響

將孔的距離改成1、2及3公分孔數2、3、4個,進行旋轉測試。

結論:採用孔距1cm孔數2和3個

孔距:1cm

孔的數量	直徑6公分(3片)	直徑 8 公分(2 片)	直徑 10 公分(1 片)
2孔	順暢	順暢	順暢
3 孔	順暢	順暢	順暢
4孔	無法持續(排除)	順暢	順暢

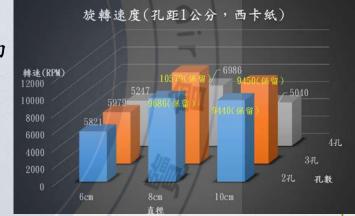

孔距:2cm

孔的數量	直徑 6 公分(3 片)	直徑 8 公分(2 片)	直徑 10 公分(1 片)
2孔	順暢	速度較慢	速度更慢
3 孔	無法持續(排除)	速度較慢,不好轉	速度較慢
4 孔	無法持續(排除)	速度更慢(排除)	速度更慢(排除)

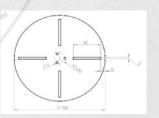
孔距:3cm

孔的數量	直徑6公分(3片)	直徑 8 公分(2 片)	直徑 10 公分(1 片)
2孔	無法旋轉(排除)	無法旋轉(排除)	可以旋轉,但轉速慢
3孔	無法旋轉(排除)	無法旋轉(排除)	無法旋轉(排除)
4孔	無法旋轉(排除)	無法旋轉(排除)	無法旋轉(排除)

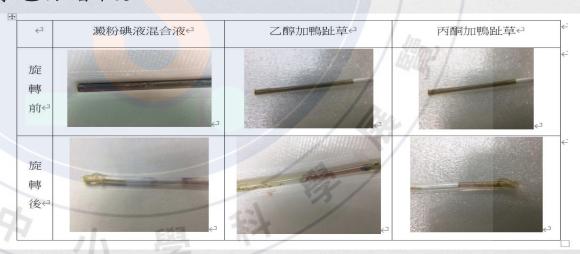
决定3D列印尺寸以及其結果


8cm*2和10cm*1重量皆約在10g左右

結論:採用直徑8cm和10cm


孔數2孔和3孔 孔距1cm 重量10g做3D列印

結論:以8cm 2孔進行後續實驗



實驗六:對混合液中,固相與液相分離的效果

溶質為澱粉及鴨趾草。溶劑為水、酒精及丙酮,進行離心旋轉分離

- 1. 所有混合液中皆可看到明顯的分層。
- 2. 但丙酮與乙醇相比,固體綠色的殘渣較少留在透明層,固相層較短, 出現淡紫色的分層,淡紫色分層較少。

結論

- 一、紙片以及3D列印圓盤大小直徑8、10cm,棉線長度50cm, 孔數2孔及3孔,孔距1cm最為理想,並且以3D列印圓盤直徑8cm重量10g效果最佳。
- 二、以3D列印圓盤進行轉速測試,以直徑8cm2孔的轉速較高 (18000rpm)。
- 三、結果並不像離心力公式,推測是因為空氣阻力的因素。
- 四、測試後發現,以有機化合物(澱粉加碘液),及植物汁液 (乙醇加鴨趾草,丙酮加鴨趾草),在直徑8cm2孔的旋轉 條件下,皆可成功進行分離。

未來與展望

我們研究 3D 紙片離心機的目的就是希望將所學的自然科學知識與實驗結果,研究出可利用隨手可得的器材而做出穩定的工具,不僅可讓資源匱乏的區域或是醫療較落後地區可供利用,更希望能傳遞「科學其實就在我們身邊」的理念。

在本次研究,以 3D 列印圓盤取代紙盤進行離心分離,實驗裝置穩定性更高。從結果分析來看,在實驗過程中可以看到比色層分析更清楚的分層,以及分離效果也更好,且實驗時間也縮短。

我們希望繼續調整實驗裝置,進行更高速的旋轉分離。也希望能做到進行血清的分離,以比較與高速離心機的分離效果,為醫療較落後的地區,因為環境的差異無法進行血液分析時,提供一個更穩定更有效率的解決方案。

參考文獻

沒想到小時候玩的不起眼紙片玩具,關鍵時刻還能救人一命 | 科學DIY

https://kknews.cc/zh-tw/news/pv5ez6e.htm

國家地理頻道/小玩具也能改善醫療,只要不到兩塊錢!

https://www.natgeomedia.com/environment/article/content-1070.html

報告完畢 謝謝評審老師、教授 恭請指導