中華民國第61屆中小學科學展覽會作品說明書

高級中等學校組 工程學(二)科

052403

凡事「球」一個「圓」-環保洗衣球之研究

學校名稱:國立新竹高級工業職業學校

作者:

職二 范晏瑄

職二 張芸綺

職二 吳書安

指導老師:

辜鉦棋

賴亭瑜

關鍵詞:海藻酸鈉、氯化鈣、洗衣球

摘要

在日常生活中,人們常常為了便利大量使用塑膠製成的產品,如果事後處理不當,將會對地球造成極大的負擔。於是我們想利用海藻酸鈉與氯化鈣產生交聯作用形成的一層薄膜,包裹著洗衣精製成洗衣球,薄膜可取代一般市售洗衣精所使用的塑膠外包裝,並且找到了會影響晶球的幾個變因,例如海藻酸鈉溶液之濃度為 2.5%時做出的球,膜厚度會最厚,並且比較了氯化鈣及硫酸鈣對晶球之影響,得到了由氯化鈣做出之球的效果會優於硫酸鈣,還有將球浸泡至不同濃度之電解質溶液中,得知了隨著電解質濃度愈高,膜的厚度就愈厚且浸泡時間愈長,膜的厚度也愈厚,最後還將晶球浸泡至 pH 值 1~13 之溶液中,得到了浸泡在 pH3 之溶液中,球的形狀最漂亮且膜也厚不易破。

壹、研究動機

地球污染日漸嚴重,生活中常見的塑膠製品如果處理不當也會帶給地 球許多負擔,這讓我們想起這陣子家中新買的洗衣球,使用起來比洗衣精 更方便,只要丟一顆洗衣球至洗衣機,就可以把衣服洗乾淨,而且洗衣球 的膜可以溶於水中,能夠降低對環境的汙染,但是市售販賣的洗衣球價格 高,所以我們想利用海藻酸鈉混和氯化鈣溶液來製作環保晶球,除了能夠 降低成本外,也能達到洗淨衣物、降低環境污染的效果。

作品與教材相關性之說明如下表整理

課程名稱	課本名稱	出版社 章節名稱		與作品相關 性
普通化學	普通化學上	全華圖書	Ch7 溶液	離子反應與 交聯作用
普通化學	普通化學下	全華圖書	Ch13 酸鹼鹽	配置酸鹼溶 液
基礎化工	基礎化工上	全華圖書	Ch5 界面化學	配置清潔用 環保晶球

貳、研究目的

- 一、做出對環境污染低之洗衣球
- 二、探討不同海藻酸鈉的比例對晶球外膜厚度之影響
- 三、探討氯化鈣與硫酸鈣對晶球之影響
- 四、探討加入電解質對晶球之影響
- 五、探討在不同 pH 值溶液下對晶球之影響

參、研究設備及器材

一、藥品

表1藥品表

名稱	數量
海藻酸鈉	1 瓶
氯化鈉	1 瓶
硫酸鈣	1 瓶
氯化鈣	1 瓶
鹽酸溶液	1 瓶
氫氧化鈉	1 瓶
洗衣精	1 瓶

二、器材

表 2 器材清單

名稱	數量
加熱板	1台
pH計	1台
燒杯	數個

名稱	數量
滴管	2支
玻棒	2支
溫度計	1支
盆子	1個
小湯匙	5支
藥匙	2支
量筒	2支

肆、研究過程及方法

一、實驗原理

(一)海藻酸鈉性質

海藻酸鈉(分子結構如下圖 1)是從褐藻類的海帶或馬尾藻中提取碘和甘露醇之後的副產物,存在於海洋褐藻細胞壁中的天然植物多醣,如泡葉藻、海帶、馬尾藻、巨藻等皆為海藻酸鈉主要來源。海藻酸鈉為α-L-古洛糖醛酸(G)及β-D-甘露糖醛酸(M)兩種醣類單體聚合而成,以 M-M,M-G 或 G-G 三種組合方式,透過α-1,4糖苷鍵鍵結形成的線性多醣類,實驗式表示為(C6H8O6)n,分子量大約1萬~60萬g/mol。正面表列於食品添加物使用範圍及限量暨規格標準中,作為增稠劑、穩定劑、保水劑及抗凍劑等使用是一種安全合法的食品添加物。

圖 1 海藻酸鈉之分子結構

(二) 交聯作用

交聯作用是當海藻酸鈉滴入氯化鈣溶液時,鈣離子(Ca²+)會取代鈉離子(Na+),並抓住海藻酸鈉之間的羧酸離子,使分子之間的聯結性變得更強,交聯作用是指聚合物官能基之間形成本身以外的連結,可以是鏈的分子間的作用力或鍵結,也可以是外加離子與鏈分子間的作用力或鍵結,會使分子更固定,流動性降低,而形成一種半透膜(如下圖)。

(三) 固化時間對結構之影響

延長固化時間可以有效的增加鈣離子進入內部並強化鍵結網狀結構,但若海藻酸鈉膠球放置至固化液中的時間過長,並不會增加鈣離子鍵結程度,反而會降低鍵結程度的情形發生。

(四) pH 值對海藻酸鈉之影響

調低 pH 值時,海藻酸鈉會形成凝膠,這種凝膠的凝膠強度較

弱,形成的凝膠較軟,並且溶於鹼溶液中;當在溶液中添加少量 Ca^{2+} 時, Ca^{2+} 置換海藻膠中的部分H+和Na+形成海藻酸鈣凝膠,海藻酸鈣形成的凝膠是不可逆的,這是海藻酸鈉相對於其他膠體是一個很明顯的優點。

(五)海藻酸鈉之生物分解性質

海藻酸鈉具有良好的生物相容性及獨特的凝膠能力,在生物醫學 領域有著廣泛的應用,高分子量的海藻酸鈉在體內降解速度低,並且 體內沒有降解海藻酸鈉的酶,而低分子量的海藻酸鈉可從生物體中緩 慢代謝排出,獲得低分子量海藻酸鈉之途徑有酸降解、酶降解、高碘 酸鈉氧化等。

(六)清潔劑清潔原理

清潔劑的功效之祕密在於「界面活性劑」與「滲透力」,界面活性 劑的分子是一種細長的分子,由親油性高的親油基和親水性高的親水 基所組成。把清潔劑溶於水中,髒衣服丟進去開始洗衣服之後,親油 基就會進入到髒污及衣服之間的界面中,使其活性化,再把髒污從布

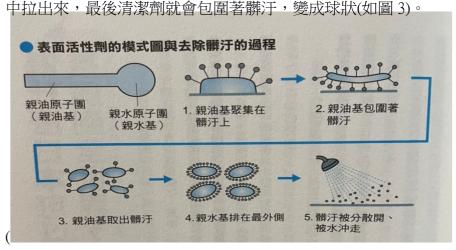
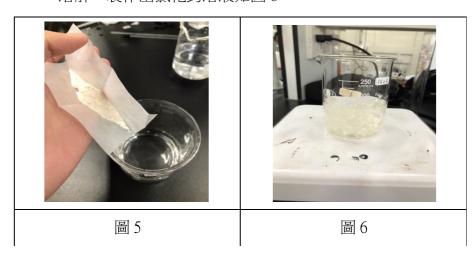
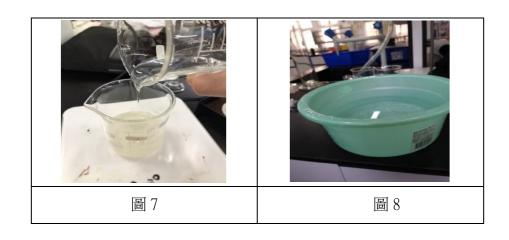


圖 3 表面活性劑去除髒污的過程

二、研究方法

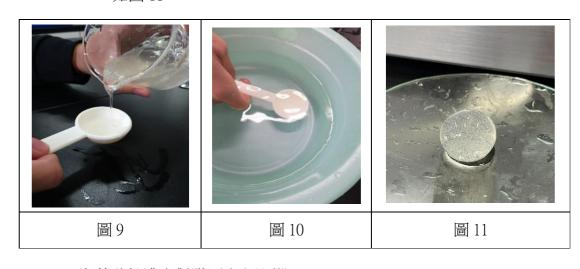
圖 4 研究流程圖


三、實驗步驟


(一) 製作洗衣球

1. 製作海藻酸鈉溶液與氯化鈣溶液

先用精秤天平秤 2.5g 海藻酸鈉和 8g 氯化鈣,將海藻酸鈉和 100g 的蒸餾水倒入燒杯如圖 5,放到加熱板上加熱並攪拌至海藻酸鈉完全溶解如圖 6,再倒入約 40g 的洗衣精繼續攪拌如圖 7,至洗衣精與溶液完全混合即可製作出海藻酸鈉溶液。


準備一個盆子,倒入 8g 氯化鈣與 800g 蒸餾水,攪拌至完全溶解,製作出氯化鈣溶液如圖 8。

2. 製作海藻酸鈉溶液與氯化鈣溶液.

將海藻酸鈉溶液倒入小湯匙中如圖 9,放入氯化鈣溶液中稍 微搖晃一下形成球狀出來如圖 10,浸泡在氯化鈣溶液中成形即可 如圖 11。

(二)海藻酸鈉濃度對膜厚度之影響

配置 2.0%、2.5%、3.0%、3.5%、4.0%的海藻酸鈉溶液,放入 0.99% 氯化鈣溶液中浸泡 10 分鐘,測量膜厚度。

圖 12 不同海藻酸鈉濃度對膜厚度之影響

(三)比較氯化鈣與硫酸鈣對球厚度之影響

配置 0.24%的硫酸鈣溶液和 0.99%的氯化鈣溶液,分別用兩者製作成球並浸泡 1、5、10、30、60、90、120 分鐘後,測量其球厚度。

(四) 電解質對晶球之影響

將做好的晶球浸泡至 4.70%、9.09%、13.04%、16.60%、20.00%、23.07%、26.3%之 NaCl 溶液中,分別浸泡 30、60、120 分鐘,觀察並測量其厚度。

(五) pH 值對晶球之影響

用鹽酸及氫氧化鈉配置出 pH 值 1~13 之溶液,再將洗衣球分別浸泡在不同 pH 值溶液中 3 小時,比較其差異。

伍、研究結果

一、海藻酸鈉濃度對膜厚度之影響

表 3 海藻酸鈉濃度對厚度之影響

海藻酸鈉濃度	膜厚度(mm)
2.0%	2.2
2.5%	2.8
3.0%	2.6
3.5%	2.6
4.0%	2.6

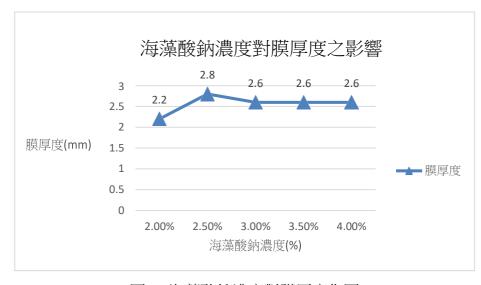


圖 13 海藻酸鈉濃度對膜厚度作圖

二、比較氯化鈣與硫酸鈣對球厚度之影響

表 4 氯化鈣與硫酸鈣對球厚度之影響

時間	1	5	10	30	60	90	120
膜厚度 (mm)	分鐘						
硫酸鈣	0.8	1.1	1.1	1.1	2.0	2.0	3.8
氯化鈣	0.5	1.0	1.1	1.3	2.0	3.0	4.8

三、電解質對晶球之影響

表 5 電解質濃度與浸泡時間對膜厚度之影響

氯化鈉 濃度 浸泡 時間	4.70%	9.09%	13.04%	16.60%	20.00%	23.07%	26.30%
浸泡 30 分 鐘之膜厚度 (mm)	0.5	0.6	1.1	1.3	2.1	2.3	3.1
浸泡 60 分 鐘之膜厚度 (mm)	0.5	0.6	1.2	1.0	1.0	3.0	4.0
浸泡 120 分 鐘之膜厚度 (mm)	2.1	1.2	1.8	3.5	4.2	5.1	5.2

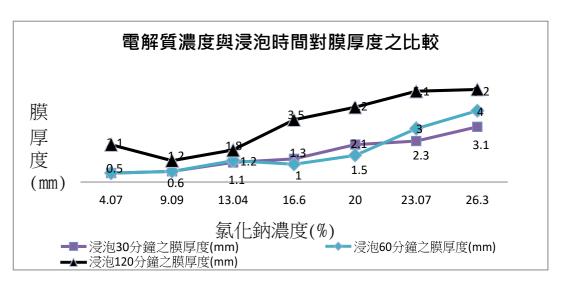


圖 14 膜厚度對氯化鈉濃度作圖

四、pH 值對晶球之影響

表 6 pH 值對晶球之影響

陸、討論

- 一、根據上述的結果顯示,設置五種不同濃度的海藻酸鈉溶液中,在濃度為 2.5%時球膜厚度最厚、包覆能力最佳,因此我們得到出濃度為2.5%海藻酸 鈉溶液最為適合製作環保洗衣晶球。
- 二、我們觀察分別使用氯化鈣溶液與硫酸鈣溶液所做出來的晶球,發現用氯化 鈣溶液做出來的晶球薄膜比使用硫酸鈣溶液做出來的還要厚,摸起來的觸 感也較光滑。對於半透膜的包覆力也遠遠大於用硫酸鈣溶液所做出來的晶 球,另外我們也發現兩者晶體會隨著浸泡時間愈長,薄膜厚度皆愈厚。
- 三、我們將晶球泡在七個不同濃度的電解質溶液中觀察晶球之變化,發現電解 質溶液濃度越高,浸泡時間越長,薄膜厚度越厚。使晶球不容易破裂,且 電解質溶液濃度越高,晶球表面越平滑,較不會掉一些屑屑。
- 四、我們觀察將晶球浸泡在 pH 值 1~13 的溶液中三個小時之影響,發現晶球浸泡在 pH 值越大的溶液越脆弱,膜也越來越薄,幾乎一碰就破裂,完全無法使用。但如果浸泡在 pH 值=1 的溶液中,晶球内部的洗衣精將與薄膜融合為一,整體呈現實心狀態,故也無法使用。依實驗結果顯示,浸泡在pH 值為 3 溶液的晶球形狀最漂亮且膜也厚不易破裂,可達到最佳使用效果。

柒、結論

- 一、本產品主要特色
 - (一) 成本遠低於市售價格
 - (二)不需花費許多時間即可製作完畢
 - (三) 體積小,方便攜帶出門
 - (四) 可被環境自然分解,具有環保利用價值
- 二、使薄膜堅固之條件
 - (一) 海藻酸鈉溶液濃度為 2.5%時, 薄膜最為堅固
 - (二) 浸泡氯化鈣溶液的時間越長, 膜厚度越厚, 越堅固
 - (三) 浸泡於濃度越高的電解質溶液,薄膜越堅固
 - (四) 浸泡於 pH 值為 3 的溶液中,外型最為完整,薄膜也最堅固
- 三、產品材料成本

製作產品所需的材料:

- 1.海藻酸鈉 1000g/893 元
- 2. 氯化鈣 500g/60 元
- 3.洗衣精 600g/23 元

做一份有十顆需要:

- 1.海藻酸鈉 2.5g/2.23 元
- 2. 氯化鈣 8g/0.96 元

(+ 3.洗衣精 40g/1.53 元

4.71 元/10 顆→0.472 元/1 顆

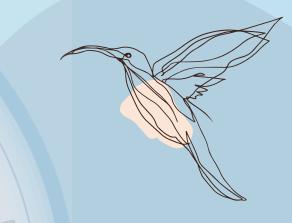
市售洗衣球的價格約 8.8 元/1 顆

由上述可知**本產品成本比市售的價格低了 8.328 元,相差了將近 20 倍**,並 且本產品較市售洗衣球環保,能夠降低對環境的傷害。

四、未來展望

- (一) 找到能夠快速溶解外膜的方法
- (二)海藻酸鈉加上氯化鈣之反應可以應用在很多方面,希望能夠多利用做 出更多環保的產品

捌、參考資料及其他


- 一、顏國欽、陳建元、韓建國、劉展冏、劉冠汝、陳建元、虞積凱、孫芳明、 蘇敏昇、馮惠萍、李嘉展、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、 李政達、盧更煌、周志輝(2007)。**食品化學**。華格納出版有限公司。
- 二、廖瑋庭(2015)。神奇微膠囊,蹦出新科技 2021 年 1 月 20 日,取自 https://www.shs.edu.tw/works/essay/2015/03/2015032623553502.pdf
- 三、科學遊戲實驗室-化學粉圓與麵條。2021 年 01 月 20 日,取自 http://scigame.ntcu.edu.tw/chemistry/chemistry-019.html
- 四、關柏峻、林奕廷、林宏昇、江柏源(2012) "海藻酸-鈣" -凝膠球粒成型機制及影響性探討。**台灣農業與食品科學**,**50**(1),12-23。
- 五、詹現璞、吳廣輝(2011)。海藻酸鈉的特性及其在食品中的應用。**食品工程**, 1,7-9。
- 六、李曉霞、徐愛華、謝威揚、馬小軍(2009)。**H₂O₂氧化降解海藻酸鈉**。中國科學院大連化學物理研究所;研究論文。
- 七、ZRW(譯)(2019)。**趣味化學**(原作者:大宮信光)。臺北市:晨星出版(原著出版年:2003)。

【評語】052403

本作品運用海藻酸鈉混和氯化鈣溶液來製作環保晶球,探討不同海藻酸鈉的比例對晶球外膜厚度之影響,並比較氯化鈣與硫酸鈣對晶球之影響,也探討加入電解質或是在不同pH值溶液下對晶球之影響。本作品的動機是要降低市售環保晶球成本,同時達到洗淨衣物、降低環境污染的效果,有環保概念也有實用價值,值得嘉許。然而,實驗數據整理及圖表的呈現宜參考正式學術論文或報告之格式,例如實驗誤差統計、圖座標宜標示清楚。研究方法說明過於簡略,例如,未說明為何選定配置0.24%硫酸鈣溶液與0.99%氯化鈣溶液,為何膜厚隨電解質濃度增加與浸泡時間增長而增厚,但電解質濃度最高只探討至26.3%,為何浸泡時間只考慮至120分鐘,另外,有關洗衣球放置於不同pH值溶液中之膜厚變化效應,亦宜提供科學方法量測數據。

本主題已有不少文獻資料可供參考,本作品在實作部分已有一些具體成果,本作品結論:成本遠低於市售價格,概估自製洗 衣球成本每顆 0.472 元,而市售洗衣球的價格每顆約 8.8 元,惟 市售洗衣球種類繁多,宜以較相匹配之材料及功用洗衣球進行價 格比較。 作品簡報

simory & High School

凡事「球」一個「圓」 -環保洗衣球之研究

中華民國 第61屆中小學科學展覽會 高級中等學校組 工程學科(二)參展作品

摘要

在日常生活中,人們常常為了便利大量使用塑膠製成的產品,如果事後處理不當,將會對地球造成極大的負擔,於是我們想以「海藻酸鈉混合氯化鈣溶液」為主題,利用兩者所形成的薄膜來取代塑膠製成的產品,並且探討溫度、酸鹼值、溶液比例、時間等因素對薄膜造成之影響。

研究動機

地球污染日漸嚴重,生活中常見的塑膠製品如果處理不當也會帶給地球許多負擔,這讓我們想起這陣子家中新買的洗衣球,使用起來比洗衣精更方便,只要丟一顆洗衣球至洗衣機,就可以把衣服洗乾淨,而且洗衣球的膜可以溶於水中,能夠降低對環境的汙染,但是市售販賣的洗衣球價格高,所以我們想利用海藻酸鈉混和氯化鈣溶液來製作環保晶球,除了能夠降低成本外,也能達到洗淨衣物、降低環境污染的效果。

實驗器材

<i>†</i>	inory & High School									
實	驗藥品		實驗器材							
海藻酸鈉	氫氧化鈉	加熱板	玻棒	藥匙						
氯化鈣	氯化鈉	pH計	溫度計	量筒						
硫酸鈣	洗衣精	燒杯	盆子							
鹽酸溶液		滴管	小湯匙							

研究方法

擬定 主題

查詢 資料

實驗 設計

做出產 品並加 以改良

實際 操作

實驗原理

固化時間對結構之影響

延長固化時間可以有效的增加鈣離子進入內部並強化鍵結網狀結構,但若海藻酸鈉膠球放置至固化液中的時間過長,並不會增加鈣離子鍵結程度,反而會降低鍵結程度的情形發生。

海藻酸鈉

海藻酸鈉是海藻酸鈉是從褐藻類的海帶或馬尾藻中提取 碘和甘露醇之後的副產物,存在於海洋褐藻細胞壁中的 天然植物多醣,如泡葉藻、海帶、馬尾藻等皆為海藻酸 鈉主要來源。

海藻酸鈉為 α -L-古洛糖醛酸(G)及 β -D-甘露糖醛酸(M) 兩種醣類單體聚合而成,以M-M,M-G或G-G三種組合方式。

海藻酸鈉之分子結構

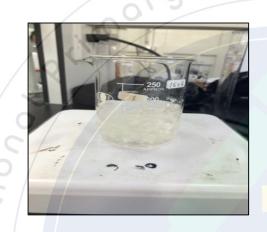
pH值對海藻酸鈉之影響


調低pH值時,海藻酸鈉會形成凝膠,這種凝膠的凝膠強度較弱,形成的凝膠較軟,並且溶於鹼溶液中當在溶液中添加少量Ca²⁺時,Ca²⁺置換海藻膠中的部分H⁺和Na⁺形成海藻酸鈣凝膠,海藻酸鈣形成的凝膠是不可逆的

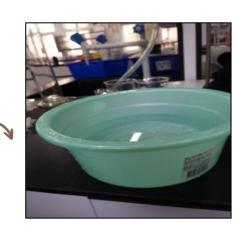
交聯作用

交聯作用是當海藻酸鈉滴入 氯化鈣溶液時,鈣離子(Ca²⁺)會取代鈉離子(Na⁺), 並抓住海藻酸鈉之間的羧酸離子,使分子之間的聯 結性變得更強,交聯作用是指聚合物官能基之間形 成本身以外的連結,可以是鏈的分子間的作用力或 鍵結,也可以是外加離子與鏈分子間的作用力或鍵 結,會使分子更固定,流動性降低,而形成一種半 透膜。

海藻酸鈉與鈣離子凝膠示意圖


製作環保洗衣球步驟

將2.5克的海藻酸鈉倒入 燒杯


即可做出環保洗衣晶球

加入100克蒸餾水後使用加熱板加熱並攪拌至海藻酸鈉溶解

倒入約40克的洗衣精攪 拌至均勻

倒入8克氯化鈣與800克的 水至盆子中攪拌均勻

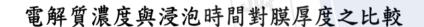
將湯匙放入氯化鈣溶液中稍 微搖晃一下

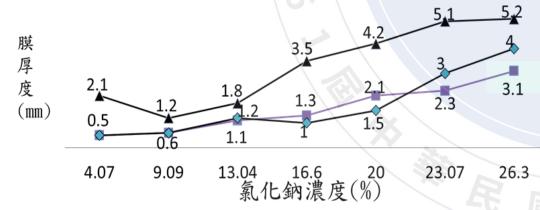
將海藻酸鈉與洗衣精的混合 溶液倒入小湯匙中

實驗結果

一、海藻酸鈉濃度對膜厚度之影響

海藻酸鈉濃度	膜厚度(mm)
2.0%	2.2
2.5%	遥 2.8
3.0%	2.6
3.5%	2.6
4.0%	2.6


根據上述的結果顯示,設置五種不同濃度的 海藻酸鈉溶液中,在濃度為2.5%時球膜厚度 最厚、包覆能力最佳,因此我們得到出濃度 為2.5%海藻酸鈉溶液最為適合製作環保洗衣 晶球。


二、比較氣化鈣與硫酸鈣對球厚度之影響

時間 膜厚度(mm)	1 分鐘	5 分鐘	10 分鐘	30 分鐘	60 分鐘	90 分鐘	120 分鐘
硫酸鈣	0.8	1. 1	1.1	1. 1	2. 0	2. 0	3.8
氯化鈣	0.5	1. 0	1.0	1.3	2. 0	3. 0	4.8

三、電解質對晶球之影響

氯化鈉濃度浸泡時間	4. 70%	9. 09%	13. 04%	16. 60%	20. 00%	23. 07%	26. 30%
浸泡30分鐘之 膜厚度(mm)	0.5	0.6	1.1	1.3	2. 1	2. 3	3. 1
浸泡60分鐘之 膜厚度(mm)	0.5	0.6	1.2	1.0	1. 0	3. 0	4. 0
浸泡120分鐘之 膜厚度(mm)	2. 1	1. 2	1.8	3. 5	4. 2	5. 1	5. 2

■浸泡30分鐘之膜厚度(mm)

◆浸泡60分鐘之膜厚度(mm)

★浸泡120分鐘之膜厚度(mm)

我們將晶球泡在七個不同濃度的電解 質溶液中觀察晶球之變化,發現電解 質溶液濃度越高,浸泡時間越長,薄 膜厚度越厚。使晶球不容易破裂,且 電解質溶液濃度越高,晶球表面越平 滑,較不會掉一些屑屑。

四、pH值對晶球之影響

pH值	觀察之狀況
1	白色實心,內部呈固體
2	外表呈白色,內部有少許液體
3	形狀完整,內部有少許液體
4	膜厚,內部有少許液體
5	膜薄,內部有少許液體
6	膜厚度適中,內部有少許液體
7	膜厚,內部有少許液體
8	膜厚,內部有少許液體
9	又軟又脆弱,內部含大量液體
10	十分脆弱,內部含大量液體
11	十分脆弱,內部含大量液體
12	十分脆弱,內部含大量液體
13	形狀完整,內部含大量液體

我們觀察將晶球浸泡在pH值 1~13 的 溶液中三個小時之影響,發現晶球浸泡 在pH值越大的溶液越脆弱,膜也越來越 薄,幾乎一碰就破裂,完全無法使用。 但如果浸泡在 pH 值=1 的溶液中,晶 球內部的洗衣精將與薄膜融合為一,整 體呈現實心狀態,故也無法使用。依 實驗結果顯示,浸泡在pH 值為 3 溶液 的晶球形狀最漂亮且膜也厚不易破裂, 可達到最佳使用效果

成本計算

成本計算		mory 8	High	School
藥品	數量	價錢		做一份有十界
海藻酸鈉	1000克	893元		1. 海藻 2. 氯化 (+ 3. 洗衣 4. 71元/10顆
氯化鈣	500克	60元		
妙管家洗衣精	600克	23元		
氯化鈉	500克	100元		我們做出的沒市售洗衣球的
硫酸鈣	1000克	250元		由上述可知本 8.328元,相 售洗衣球環份
氫氧化鈉	500克	65元		
鹽酸	500毫升	80元		小學

做一份有十顆需要:

- 1. 海藻酸鈉2. 5g/2. 23元
- 2. 氯化鈣8g/0.96元
- (+ 3. 洗衣精40g/1.53元
- 4.71元/10顆→0.472元/1顆

我們做出的洗衣球價格約0.472元/1顆 市售洗衣球的價格約8.8元/1顆 由上述可知本產品成本比市售的價格低了 8.328元,相差了將近20倍,並且本產品較市 售洗衣球環保,能夠降低對環境的傷害。

結論

本產品主要特色

- 1. 成本遠低於市售價格
- 2. 不需花費許多時間即可製作完畢
- 3. 體積小,方便攜帶出門
- 4. 可被環境自然分解,具有環保利用價值

產品成本

本產品成本比市售的價格低了 8.328 元, 相差了將近 20 倍

使薄膜堅固之條件

- 1. 海藻酸鈉溶液濃度為2. 5%時,薄膜最為堅固
- 2. 浸泡氯化鈣溶液的時間越長, 膜厚度越厚
- 3. 浸泡於濃度越高的電解質溶液,薄膜越堅固
- 4. 浸泡於pH值為3的溶液中,外型最為完整, 薄膜也最堅固

環保洗衣球成品

參考資料

- 1. 廖瑋庭(2015)。神奇微膠囊,蹦出新科技2021年1月20日,取自 https://www.shs.edu.tw/works/essay/2015/03/2015032623553502 .pdf
- 2. 科學遊戲實驗室-化學粉圓與麵條。2021年01月20日,取自 http://scigame.ntcu.edu.tw/chemistry/chemistry-019.html
- 3. 關柏峻、林奕廷、林宏昇、江柏源(2012) "海藻酸—鈣"—凝膠球 粒成型機制及影響性探討。台灣農業與食品科學,50(1),12-23。
- 4. 詹現璞、吳廣輝(2011)。海藻酸鈉的特性及其在食品中的應用。食品工程,1,7-9。
- 5. 李曉霞、徐愛華、謝威揚、馬小軍(2009)。**H₂O₂氧化降解海藻酸鈉**。 中國科學院大連化學物理研究所;研究論文。
- 6. ZRW(譯)(2019)。**趣味化學**(原作者:大宮信光)。臺北市:晨星出版 (原著出版年:2003)。