中華民國第60屆中小學科學展覽會作品說明書

國小組 數學科

佳作

080407

變色龍問題探討

學校名稱:桃園市大溪區仁和國民小學

作者:

小六 陳政諺

小六 劉涎沚

小六 林莉潔

小六 王璟評

小六 周子心

小六 周愷若

指導老師:

林徹輝

鄧達鈞

關鍵詞:高斯符號、變色組合、倒推法

摘要

我們探討變色龍問題,透過列舉三色樹的組合以及三色樹的組合數計算,讓我們更加了解收斂於同一種顏色的條件和方法,也利用列舉的方式找到三色變色組合的通式。此外,我們應用 excel 幫助進行三色、四色、五色變色組合的列舉,讓我們知道變色組合的結構大約相似,可透過各結構的相似了解 n 種變色組合的情況。我們也探討了變色組合在 excel 中的外接長方形,透過界定外接長方形的長與寬,可更容易算出變色組合的數量。最後利用變色樹規律,寫下三~五色變色組合數量計算公式,並將公式推展至 n 色樹。

壹、研究動機

在科學研習月刊上,我們看到游森棚老師提出的變色龍問題。

題目描述為:「一個島上有綠色、棕色、黑色三種變色龍各 15, 25, 60 隻。生物學家發現當兩隻不同顏色的變色龍相遇時,這兩隻會同時變成第三種顏色。一名生物數學家研究這個現象後,斷定這 100 隻變色龍有機會全部變成同一種顏色。結果還真的發生了! 請問是怎麼變的? 這個顏色是什麼?」

我們試著推算題目,找出問題的答案,發現果然最後會變成同一種顏色。

這不禁讓我們思考,為何一定會變成同一種顏色?是否有最短路徑?會有多少個變色組合?依據三色變色龍問題,可知當變色龍種類變成四種,三種顏色相撞會變成另一種顏色;變色龍種類變成五種,四種顏色相撞會變成另一種顏色。變色規則類似,在進行倒推驗算時,也會發現變色樹有相似的結構。這使我們對三色、四色、五色變色龍問題的規律與異同點感到好奇。

為了能尋求這些問題的解答,我們開始了這一次的研究。

貳、研究目的

一、三種變色龍在各數目時,分別會產生哪些情況?

哪些情況下最後一定會變成同一種顏色?

- 二、三種變色龍數量加總為 t 時,若要最後變為同一種顏色,總共有多少種可能的組合?又分別會是那些組合?
- 三、各組合變為同一種顏色的最短路徑為何?有什麼樣的條件與步驟?
- 四、四種變色龍或種類數目更多時,會是什麼樣的情況?有多少變色組合?
- 五、透過外接長方形,了解電腦運算變色組合的範圍。

參、研究設備及器材

紙、筆、電腦、excel

肆、研究過程或方法

一、文獻探討與名詞介紹

(一)我們上網搜尋變色龍相關問題,將不同資料的比較整理如下:

作品名稱	作品重點
動手玩數學第 14 期破解 秘笈	假設分別有 X 對綠、棕變色龍變為黑色變色龍; y 對綠、 黑變色龍變為棕色變色龍; Z 對棕、黑變色龍變為綠色變 色龍。 根據上面假設列出聯立方程式,並以此證明是否可以變成 同一種顏色
變色球遊戲的探討 (中華民國第四十七屆中 小學科學展覽會 國中組 數學科)	 利用同餘定理找到判斷式 3a+b≥c>b,判斷是否可以變為同一種顏色。 利用判斷式找出最少操作策略。 四、五色變色方式仍為兩兩相碰形成另一顏色。 關於四色以上的分析,並未指明球色變化的規則。
我們的作品	1.在 n 種變色龍的情況下,數量相同的(n-1)種不同顏色變色龍相碰會變成另一種顏色。 2.利用倒推窮舉法列出所有的可能,依變色組合的規律畫出變色樹。 3.透過變色樹討論三色、四色、五色變色龍問題解答的異同,從中找到規律,算出變色組合數,並用相同方法延伸至 n 種變色龍問題。 4.以圖形簡化問題,並透過比較找出不同變色龍數量會產生的可能組合,最後找出全部變色龍的數量規律,並推算出最短路徑。 5.歸納統整規律,利用公式算出各色樹上變色組合數量。 6.發現在計算四色樹第二層數目時,b>0 且 c>0 的變色組合數為完全平方數相加減;五色樹第二層變色組合數為立方數相加減;n 色樹第二層變色組合數為(n-2)次方數相加減。 7.利用發現的規律,以排列組合方式算出變色組合數量。

從文獻討中,我們發現其他人的文章著眼於可不可以收斂於同一色,所以決定要討論不同的方向,試著**列舉出三色、四色、五色變色龍問題組合,並且透過列舉找到規律,試著算出全部組合的數量**。我們也希望在討論的過程中,可以找到比他人更簡單的收斂條件以及收斂方法。

(二)名詞定義

- 1. 變色組合(a₁, a₂, a₃):在三色變色龍問題中,我們以(a₁, a₂, a₃)表示各顏色變色龍數量。如同研究動機中的題目,則記為(15, 25, 60),也就是 a₁=15, a₂=25, a₃=60。如果能將(15, 25, 60)變成(100, 0, 0)或(0, 100, 0)或(0, 0, 100),則表示可變成同一種顏色。三色變色龍問題中,變色組合表示為(a₁, a₂, a₃);四色變色龍問題中,變色組合表示為(a₁, a₂, a₃, a₄);五色變色龍問題中,變色組合表示為(a₁, a₂, a₃, a₄, a₅)。依此類推,可知 \mathbf{n} 色變色龍問題中,變色組合表示為(a₁, a₂, a₃, a₄, a₅, …, a_n),變色組合中有 \mathbf{n} 個數字。
- 2. n 色變色樹:我們以倒推的方式找出全部的變色組合,因最後倒推出來的變色組合結構成樹狀,所以我們稱為變色樹。三種顏色可以畫出三色變色樹,四種顏色可畫出四色變色樹..., n 種顏色則是 n 色變色樹。
- 4. n 表示變色龍的顏色數量。在三色變色龍問題中,n=3;在四色變色龍問題中,n=4…其他類推。
- 5. 我們以 f 表示(n-1)隻不同顏色變色龍相撞變另一種顏色的情況。因為我們以倒推列舉,所以多數用到 f^{-1} 。
- (1)從題目中可以知道在三色變色龍問題下,第二、三種顏色相碰會變成第一種顏色,我們將此種情況下變色龍數目的改變以 f1 命名,表示為 f1=(+2,-1,-1);
- f2 表示第一、三種顏色相碰時變色龍改變的數量,表示為 f2=(-1,+2,-1);
- f3表示第一、三種顏色相碰時變色龍改變的數量,表示為f3=(-1,-1,+2)。
- (2)因為我們以倒推列舉,所以定義 f^{-1} 表示 f_{1} 相反的情況,所以**在三色變色龍問題下,** f^{-1} 1=(-2,+1,+1), f^{-1} 2=(+1,-2,+1), f^{-1} 3=(+1,+1,-2)
- (3)在 n 種變色龍問題下, $f1=(+(n-1),-1,-1,-1,-1,-1\cdots)$, $f2=(-1,+(n-1),-1,-1,-1\cdots)$, $f3=(-1,-1,+(n-1),-1,-1,\cdots)$ …其他類推。
- 在 n 種變色龍問題下, $f^{-1}1=(-(n-1),+1,+1,+1,+1,+1\cdots)$, $f^{-1}2=(+1,-(n-1),+1,+1,+1\cdots)$, $f^{-1}3=(+1,+1,-(n-1),+1,+1\cdots)$ …其他類推。
- (4)1f1表示1隻第二種顏色變色龍和1隻三種顏色相碰會變成2隻第一種顏色;
- 2f1表示2隻第二種顏色變色龍和2隻三種顏色相碰會變成4隻第一種顏色;
- 3f1表示3隻第二種顏色變色龍和3隻三種顏色相碰會變成6隻第一種顏色;
- 4f1表示 4 隻第二種顏色變色龍和 4 隻三種顏色相碰會變成 8 隻第一種顏色;
- 變色龍數目改變情況可分別表示為 1f1=(+2,-1,-1), 2f1=(+4,-2,-2),
- 3f1=(+6,-3,-3), 4f1=(+8,-4,-4) \circ
- 若是依倒推數目改變情況則表示為 $1f^{-1}1=(-2,+1,+1)$, $2f^{-1}1=(-4,+2,+2)$, $3f^{-1}1=(-6,+3,+3)$, $4f^{-1}1=(-8,+4,+4)$ 。
- 6. 高斯符號[x]:表示取不大於 x 的最大整數。

7. 外接長方形:在用 excel 進行三色樹變色組合的列舉結果中,取變色樹的一邊,可清楚看到外接長方形。

外接長方形向下數的列數,也就是 $f1^{-1}$ 的次數;向右數的行數,也就是 $f2^{-1}$ 的次數。

18	0	0															
16	1	1															
14	2	2	15	0	3												
12	3	3	13	1	4												
10	4	4	11	2	5	12	0	6									
8	5	5	9	3	6	10	1	7									
6	6	6	7	4	7	8	2	8	9	0	9						
4	7	7	5	5	8	6	3	9	7	1	10						
2	8	8	3	6	9	4	4	10	5	2	11	6	0	12			
0	9	9	1	7	10	2	5	11	3	3	12	4	1	13			
-2	10	10	-1	8	11	0	6	12	1	4	13	2	2	14	3	0	15
4	11	11	-3	9	12	-2	7	13	-1	5	14	0	3	15	1	1	16

三色變色樹的 外接長方形

- 二、三色樹的列舉與探討
- (一)以窮舉法倒推找出所有可能
- 1. f 運算範例,以題目(15,25,60)為例:

令第一種顏色為綠色,第二種顏色為棕色,第三種顏色為黑色。

-	<u> </u>	
步驟	表達方式	代表意義
第一步	(15, 25, 60)+15f3 =(15-15, 25-15, 60+30) =(0, 10, 90)	原本綠色有 15 隻,棕色有 25 隻,黑色有 60 隻。 取 15 隻綠色與 15 隻棕色相撞,進行 15 次 f3,產生 30 隻黑色。 綠色變 0 隻,棕色變 10 隻,黑色變 90 隻。
第二步	(0, 10, 90)+10f1 =(0+20, 10-10, 90-10) =(20, 0, 80)	綠色有 0 隻,棕色有 10 隻,黑色有 90 隻。 取 10 隻棕色與 10 隻黑色相撞,進行 10 次 f1,產生 20 隻綠色。 綠色變 20 隻,棕色變 0 隻,黑色變 80 隻。
第三步	(20 , 0 , 80)+20f2 =(20-20 , 0+40 , 80-20) =(0 , 40 , 60)	綠色有 20 隻,棕色有 0 隻,黑色有 80 隻。 取 20 隻綠色與 20 隻黑色相撞,進行 20 次 f2,產生 40 隻綠色。 綠色變 0 隻,棕色變 40 隻,黑色變 60 隻。
第四步	(0, 40, 60)+20f1 =(0+40, 40-20, 60-20) =(40, 20, 40)	綠色有 0 隻,棕色有 40 隻,黑色有 60 隻。 取 20 隻棕色與 20 隻黑色相撞,進行 20 次 f1,產生 40 隻綠色。 綠色變 40 隻,棕色變 20 隻,黑色變 40 隻。
第五步	(40 , 20 , 40)+40f2 =(40-40 , 20+80 , 40-40) =(0 , 100 , 0)	綠色有 40 隻,棕色有 20 隻,黑色有 40 隻。 取 40 隻綠色與 40 隻黑色相撞,進行 40 次 f2,產生 80 隻綠色。 綠色變 0 隻,棕色變 100 隻,黑色變 0 隻。

2. f 運算範例,以(0,100,0)倒推回(15,25,60)為例:

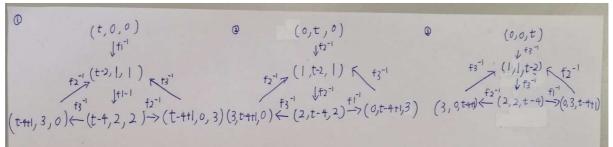
步驟	表達方式	代表意義
第一步	$(0, 100, 0)+40f^{-1}2$ =(0+40, 100-80, 0+40) =(40, 20, 40)	綠色有 0 隻,棕色有 100 隻,黑色有 0 隻。 取 80 隻棕色,進行 40 次 $f^{-1}2$,產生 40 隻綠色和 40 隻黑色。 綠色變 40 隻,棕色變 20 隻,黑色變 40 隻。
第二步	$(40, 20, 40) + 20f^{-1}1$ = $(40-40, 20+20, 40+20)$ = $(0, 40, 60)$	綠色有 40 隻,棕色有 20 隻,黑色有 40 隻。 取 40 隻綠色,進行 20 次 $f^{-1}1$,產生 20 隻棕色和 20 隻黑色。 錄色變 0 隻,棕色變 40 隻,黑色變 60 隻。
第三步	$(0, 40, 60) + 20f^{-1}2$ = (0+20, 40-40, 60+20) = (20, 0, 80)	綠色有 0 隻, 棕色有 400 隻, 黑色有 60 隻。 取 40 隻棕色, 進行 20 次 f ⁻¹ 2, 產生 20 隻綠色和 20 隻黑色。 綠色變 20 隻, 棕色變 0 隻, 黑色變 80 隻。
第四步	$(20, 0, 80)+10f^{-1}1$ =(20-20, 0+10, 80+10) =(0, 10, 90)	綠色變 20 隻,棕色變 0 隻,黑色變 80 隻。 取 20 隻綠色,進行 10 次 f ⁻¹ 1,產生 10 隻棕色和 10 隻黑色。 綠色變 0 隻,棕色變 10 隻,黑色變 90 隻。
第五步	$(0, 10, 90)+15f^{-1}3$ =(0+15, 10+15, 90-30) =(15, 25, 60)	線色有 0 隻,棕色有 10 隻,黑色有 90 隻。 取 30 隻黑色,進行 15 次 f ⁻¹ 3,產生 15 隻綠色和 15 隻棕色。 綠色變 15 隻,棕色變 25 隻,黑色變 60 隻。

3. t=3~10 的窮舉:

我們利用上面 f 和 f^{-1} 倒推出(3,0,0)~(10,0,0)的所有問題可能,列表如下

(t, 0, 0)	倒推所得全部組合	組合數
(3, 0, 0)	(1, 1, 1)	1
(4, 0, 0)	(2,1,1)(1,3,0)(0,2,2)(1,0,3)	4
(5, 0, 0)	(3, 1, 1)(2, 3, 0)(1, 2, 2)(2, 0, 3)(0, 4, 1)(0, 1, 4)	6
(6, 0, 0)	(4,1,1)(3,3,0)(2,2,2)(3,0,3)(1,4,1)(0,3,3)(1,1,4)	7
(7, 0, 0)	(5, 1, 1)(4, 3, 0)(3, 2, 2)(4, 0, 3)(2, 4, 1)(1, 3, 3)(2, 1, 4)	11
	(1,6,0)(0,5,2)(0,2,5)(1,0,6)	
(8, 0, 0)	(6,1,1)(5,3,0)(4,2,2)(5,0,3)(3,4,1)(2,3,3)(3,1,4)	14
	(2,6,0)(1,5,2)(0,4,4)(1,2,5)(2,0,6,)(0,7,1)(0,1,7)	
(9, 0, 0)	(7,1,1)(6,3,0)(5,2,2)(6,0,3)(4,4,1)(3,3,3)(4,1,4)	16
	(3,6,0)(2,5,2)(1,4,4)(2,2,5)(3,0,6)(1,7,1)(0,6,3)	
	(0,3,6)(1,1,7)	
(10, 0, 0)	(8,1,1)(7,3,0)(6,2,2)(7,0,3)(5,4,1)(4,3,3)(5,1,4)	21
	(4,6,0)(3,5,2)(2,4,4)(3,2,5)(4,0,6)(2,7,1)(1,6,3)	
	(0,5,5)(1,3,6)(2,1,7)(1,9,0)(0,8,2)(0,2,8)(1,0,9)	

(二)發現、分析與繪圖


- 1. 發現與分析:從上面的窮舉,我們發現以下幾點:
- (1)t 根據除以 3 所得餘數可分為 3k, 3k+1, 3k+2, 三種。
- (2)在 t=3k,也就是說 t 為 3 的倍數時,倒推可出現(t-2,1,1),(1,t-2,1),(1,1,t-2)三種組合,t=3k+1 或 3k+2 時則不行。
- (3)從第2點可知組合與3的倍數有相關性,我們集中觀察其他與3的倍數有相關的部分,發現如將所有組合表示為(a₁, a₂, a₃),則 a2-a3 皆為3的倍數。
- 2. 將變色組合繪製為變色樹:在利用倒推找出全部的變色組合後,我們想要透過圖形將找到的答案統整在一塊。這樣可以更方便觀察與尋找規律,繪製過程與結果如下:
- (1)方向與符號:如從(t,0,0)出發,我們將變色樹的方向與符號定義如下表變色樹的右邊方向與符號定義

符號名稱	數字變化	方向	符號名稱	數字變化	方向
f1	(+2, -1, -1)	↑	$f1^{-1}$	(-2, +1, +1)	\downarrow
f2	(-1, +2, -1)	←	$f2^{-1}$	(+1, -2, +1)	\rightarrow
f3	(-1, -1, +2)	1	$f3^{-1}$	(+1, +1, -2)	1

變色樹的左邊方向與符號定義

符號名稱	數字變化	方向	符號名稱	數字變化	方向
f1	(+2, -1, -1)	↑	$f1^{-1}$	(-2, +1, +1)	\downarrow
f2	(-1, +2, -1)	4	$f2^{-1}$	(+1, -2, +1)	1
f3	(-1, -1, +2)	\rightarrow	$f3^{-1}$	(+1, +1, -2)	←

(2)倒推方向示意圖:根據符號,我們訂下倒推時的方向圖

- (3)三角形迴圈:從窮舉結果與上面的表格,我們可以知道 f1+f2+f3 會回到原點,同樣的道理 $f1^{-1}+f2^{-1}+f3^{-1}$ 也會回到原點。
- (3)變色樹範例:根據上面2點,我們繪製出將全部組合集合,繪製出變色樹,以(12,0,0)為例。

(三)以電腦運算

- 1. 以 excel 製作變色樹:根據變色樹的原理,我們利用 excel,幫助我們可以更快的算出所有變色組合,方法如下:
- (1)以(t, 0, 0)為最上面中心,每3欄為1組合。
- (2)變色樹中心的組合,第1個數字為上面的數字-2,第2、3個數字分別是上面的數字+1。 範例如下:

M	N	0
t	0	0
=M1-2	=N1+1	=01+1
=M2-2	=N2+1	=02+1
=M3-2	=N3+1	=03+1
=M4-2	=N4+1	=04+1
=M5-2	=N5+1	=05+1

(3)從變色樹中心向右發展,每個組合第2個數字為左邊組合第2個數字-2,第1、3個數字為左邊組合第1、3個數字+1。向左發展則相反。範例如下:

THE STATE OF THE PARTY OF THE P	-11111	-0111			
=M2-2	=N2+1	=02+1	=M2-1	=N2-1	=02+2
=M3-2	=N3+1	=03+1	=M3-1	=N3-1	=03+2

2. 三色變色樹範例

(1)(18,0,0)電腦公式圖

	A	B	C	D	E	P	G	H	1	1	K	L	M	N	0	P	Q	R	S	7	U	V	W	X	Y	Z	AA
1	1000		1010		0.554			1500	1107	- 00	23455	11826	18	0	0		HX.	900	100		- 20		1.500		6 60		30150
2													=M1-2	=N1+1	=01+1												
3										=M2-1	=N2+2	=02-1	=M2-2	=N2+1	=02+1	=M2-1	=N2-1	=02+2									
4										=M3-1	=N3+2	=03-1	=M3-2	=N3+1	=03+1	=M3-1	=N3-1	=03+2									
5							=J4-1	=K4+2	=L4-1	=M4-1	=N4+2	=04-1	=M4-2	=N4+1	=04+1	=M4-1	=N4-1	=04+2	=P4-1	=Q4-1	=R4+2						
6							=J5-1	=K5+2	=L5-1	=M5-1	=N5+2	=05-1	=M5-2	=N5+1	=05+1	=M5-1	=N5-1	=05+2	=P5-1	=Q5-1	=R5+2						
7				=G6-1	=H6+2	=I6-1	=J6-1	=K6+2	=L6-1	=M6-1	=N6+2	=06-1	=M6-2	=N6+1	=06+1	=M6-1	=N6-1	=06+2	=P6-1	=Q6-1	=R6+2	=\$6-1	=T6-1	=U6+2			
8				=G7-1	=H7+2	=I7-1	=J7-1	=K7+2	=L7-1	=M7-1	=N7+2	=07-1	=M7-2	=N7+1	=07+1	=M7-1	=N7-1	=07+2	=P7-1	=Q7-1	=R7+2	=\$7-1	=T7-1	=U7+2			
9	=D8-1	=E8+2	=F8-1	=G8-1	=H8+2	=I8-1	=J8-1	=K8+2	=L8-1	=M8-1	=N8+2	=08-1	=M8-2	=N8+1	=08+1	=M8-1	=N8-1	=08+2	=P8-1	=Q8-1	=R8+2	=58-1	=T8-1	=U8+2	=V8-1	=W8-1	=X8+2
10	=D9-1	=E9+2	=F9-1	=G9-1	=H9+2	= I 9-1	=J9-1	=K9+2	=L9-1	=M9-1	=N9+2	=09-1	=M9-2	=N9+1	=09+1	=M9-1	=N9-1	=09+2	=P9-1	=Q9-1	=R9+2	=59-1	=T9-1	=U9+2	=V9-1	=W9-1	=X9+2
11	=D10-1	=E10+2	=F10-1	=G10-1	=H10+2	=I10-1	=J10-1	=K10+2	=L10-1										=P10-1	=Q10-1	=R10+2	=S10-1	=T10-1	=U10+2	=V10-1	=W10-1	=X10+2
12	=D11-1	=E11+2	=F11-1	0.38-10/6035			200000												240.17600			1000000			=V11-1	=W11-1	=X11+2
13																											
14																											

(2) (18,0,0)樹狀圖

0 1	8 0																																		0	0	1
		1	16	1	0	15	3																						0	3	15	1	1	16			
		3	15	0	2	14	2	1	13	4	0	12	6										0	6	12	1	4	13	2	2	14	3	0	15			
					4	13	1	3	12	3	2	11	5	1	10	7	0	9	9	1	7	10	2	5	11	3	3	12	4	1	13						
					6	12	0	5	11	2	4	10	4	3	9	6	2	8	8	3	6	9	4	4	10	5	2	11	6	0	12						
								7	10	1	6	9	3	5	8	5	4	7	7	5	5	8	6	3	9	7	1	10									
								9	9	0	8	8	2	7	7	4	6	6	6	7	4	7	8	2	8	9	0	9									
											10	7	1	9	6	3	8	5	5	9	3	6	10	1	7												
											12	6	0	11	5	2	10	4	4	11	2	5	12	0	6												
														13	4	1	12	3	3	13	1	4															
														15	3	0	14	2	2	15	0	3															
																	16	1	1																		
																	18	0	0																		

三、三色樹的比較與分析

(一)總數 t 與全部變色組合的對應關係:因 f⁻¹可交換的特性,根據列舉結果完成下表。

起點	終點	過程	步數	組合數
(3, 0, 0)	(0, 0, 3)	$f1^{-1}f3$	2	3
(4, 0, 0)	(1, 0, 3)	$f1^{-1}f1^{-1}f2^{-1}$	3	4
(5,0,0)	(0, 1, 4)	$f1^{-1}f1^{-1}f1^{-1}f2^{-1}$	4	5
(6, 0, 0)	(0, 0, 6)	$f1^{-1}f1^{-1}f1^{-1}f2^{-1}f3$	5	7
(7, 0, 0)	(1, 0, 6)	$f1^{-1}f1^{-1}f1^{-1}f2^{-1}f2^{-1}f2^{-1}$	6	8
(8, 0, 0)	(0, 1, 7)	$f1^{-1}f1^{-1}f1^{-1}f1^{-1}f1^{-1}f2^{-1}f2^{-1}$	7	10
(9, 0, 0)	(0, 0, 9)	$f1^{-1}f1^{-1}f1^{-1}f1^{-1}f1^{-1}f1^{-1}f2^{-1}f2^{-1}f3$	8	12

(二)以 X 代表由上而下第幾列, Y 代表由中間向右數第幾列

t 的種類	X最多	Y最多
t=3k	2t/3	K
t=3k+1	(2t-2)/3	K
t=3k+2	(2t-2+1)/3	k

(三)三色變色樹觀察:

1. a(t, 0, 0)中,當 t=3k 時,可從(t, 0, 0)到(0, 0, t),其他情況不行,以(18, 0, 0)為例。

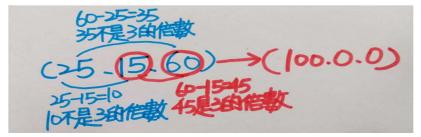
					18,0,0					
					16,1,1					
				15,3,0	14,2,2	15,0,3				
				13,4,1	12,3,3	13,1,4				
			12,6,0	11,5,2	10,4,4	11,2,5	12,0,6			
			10,7,1	9,6,3	8,5,5	9,3,6	10,1,7			
		9,9,0	8,8,2	7,7,4	6,6,6	7,4,7	8,2,8	9,0,9		
		7,10,1	6,9,3	5,8,5	4,7,7	5,5,8	6,3,9	7,1,10		
	6,12,0	5,11,2	4,10,4	3,9,6	2,8,8	3,6,9	4,4,10	5,2,11	6,0,12	
	4,13,1	3,12,3	2,11,5	1,10,7	0,9,9	1,7,10	2,5,11	3,3,12	4,1,13	
3,15,0	2,14,2	1,13,4	0,12,6				0,6,12	1,4,13	2,2,14	3,0,15
1,16,1	0,15,3								0,3,15	1,1,16

2. 在 t=3k 時,如將所有組合表示為 (a_1,a_2,a_3) ,則可在組合中找到 (a_1,a_2,a_3) 所有排列。 在 t=3k+1 或 3k+2 時,可在組合中找到 (a_1,a_2,a_3) 與 (a_1,a_3,a_2) 。

若是以(0,t,0)倒推,可找到(a2,a1,a3)奥(a3,a1,a2),以(0,0,t)倒推,可找到 (a_2,a_3,a_1) 奥 (a_3,a_2,a_1) 。

3. 以 (a_1, a_2, a_3) 表示從(t, 0, 0)到(0, 0, t)的三色樹。根據觀察,每一行的頂端數字 a1 會比 前一行數字 a1 少 3

t	0	0						
t-2	1	1						
t-4	2	2	t-3	0	3			
t-6	3	3	t-5	1	4			
t-8	4	4	t-7	2	5	t-6	0	6


4. 三色數變色組合通式:利用倒推法觀察變色模式

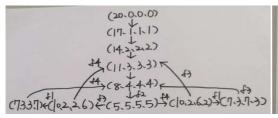
令 f(t, x, y)=f(總和 t, 向下數第 x 層, 右邊第 y 個)=(a1, a2, a3)

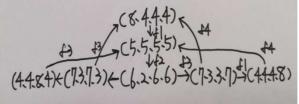
- (1)根據變色樹模型可得知,x最大=2t/3,x=(a2+2*a3)/3,v=(a3-a2)/3。
- (2)反過來說(a₁, a₂, a₃)=(t-2x+v, x-2v, x+v)

(四)最短路徑:在列舉三色樹的變色組合後,透過規律我們可以發現以下幾點:

- 1. 如何用最短路徑收斂為同一種顏色
- (1)判斷屬於何種三色樹:根據觀察,當變色組合為(a1, a2, a3)時, a1, a2, a3 任選 2 數相減,則其中必有一結果為 3 的倍數。如 a2-a3 為 3 的倍數,則最後會變成 a1 的顏色。如下圖:

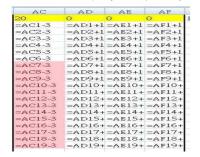
(2)判斷在哪一邊 :據三色樹的形狀,我們可以知道只要不構成迴圈可構成最短路徑,也就 是收斂於(0, t, 0)時僅需要 f1, f2 或 f1, f3 其中一個組合。


根據上面的觀察可以知道 x=a2+2*a3/3,y=a3-a2/3。以(15,25,60)為例,可得 x=45,y=15

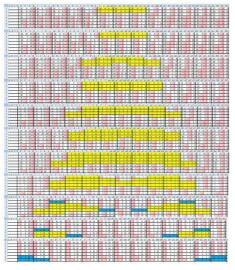

- (3)(25, 15, 60)變色結果:根據上面計算 x, y 的結果進行變色
- (25, 15, 60)+f2*15=(25-15, 15+2*15, 60-15)=(10, 45, 45)
- (10, 45, 45)+f1*45=(10+2*45, 45-45, 45-45)=(100, 0, 0)

四、四色樹

(一). 飛碟模式:根據三色樹的結構,我們添加了f3⁻¹,成為了四色樹。


因為形狀像飛碟所以我們稱為飛碟模式

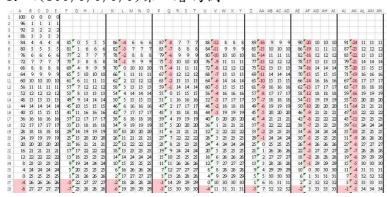
根據上面的模式,我們發現:


- 1. 在四色數中只要 $f1^{-1}$, $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ 都使用到,則會回到上一層。所以之前觀察三色樹得到結論「 f^{-1} 」不要使用全部,是正確的。
- 2. 若按照 $f1^{-1}$, $f2^{-1}$, $f3^{-1}$ 順序到推,在進行完 $f1^{-1}$ 後,再倒推 $f2^{-1}$, $f3^{-1}$ 。如果再倒推 $f2^{-1}$, $f3^{-1}$ 時,又進行 $f1^{-1}$,會讓變色組合跑到下一層。
- 3. 飛碟模式過於擁擠,不容易看出規律,我們使用電腦演算來找出規律。
- (二)電腦演算模式
- 1. 先取 f1⁻¹在第一層結構進行向下發展

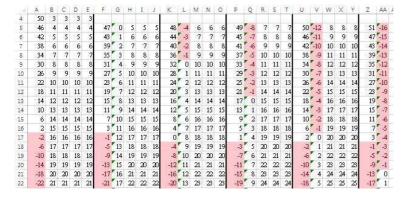
2. 以第一層結構的變色組合,在第二層取 f2⁻¹,f3⁻¹分別向下及向右發展。

AC	AD	AE	AF	AG	AH	.AI	AJ
=Sheet1!AC4	=Sheet1!AD4	=Sheet1!AE4	=Sheet1!AF4	=AC1+1	=AD1+1	=AE1-3	=AF1+1
=AC1+1	=AD1-3	=AE1+1	=AF1+1	=AC2+1	=AD2+1	=AE2-3	=AF2+1
=AC2+1	=AD2-3	=AE2+1	=AF2+1	=AC3+1	=AD3+1	=AE3-3	=AF3+1
=AC3+1	=AD3-3	=AE3+1	=AF3+1	=AC4+1	=AD4+1	=AE4-3	=AF4+1
=AC4+1	=AD4-3	=AE4+1	=AF4+1	=AC5+1	=AD5+1	=AE5-3	=AF5+1
=AC5+1	=AD5-3	=AE5+1	=AF5+1	=AC6+1	=AD6+1	=AE6-3	=AF6+1
=AC6+1	=AD6-3	=AE6+1	=AF6+1	=AC7+1	=AD7+1	=AE7-3	=AF7+1
=AC7+1	=AD7-3	=AE7+1	=AF7+1	=AC8+1	=AD8+1	=AE8-3	=AF8+1
=AC8+1	=AD8-3	=AE8+1	=AF8+1	=AC9+1	=AD9+1	=AE9-3	=AF9+1
=AC9+1	=AD9-3	=AE9+1	=AF9+1	=AC10+	=AD10+1	=AE10-3	=AF10+1

3. 從 $(28,0,0,0) \rightarrow (19,3,3,3) \rightarrow (1,1,1,25)$ 為例



左圖為(28,0,0,0)→(1,1,1,25)四色數的第二層的範例。 我們將 11 頁的工作表裁切後排列在一起,形成四色樹的圖形。紅色表示負數,也就是無法成為變色組合。 黃色的部分是可成為變色組合。 從圖形中可以看到對稱與規律。 最讓人要訝異的是,雖然一頁一頁的工作表看起來是長方形,但沒想到排在一起,依然是變色樹的形狀。


五、五色樹

(一)取三色樹結構作為第一層,分別以 f1⁻¹,f2⁻¹ 向下以及向右發展

1. 以(100, 0, 0, 0, 0)第一層為例

2. 以(62, 0, 0, 0, 0)第一層為例

3. 以(20,0,0,0,0)第一層為例

4	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T
1	20	0	0	0	0				120											
2	16	1	1	1	1															
3	12	2	2	2	2						i ii									
4	8	3	3	3	3															
5	4	4	4	4	4	5	0	5	5	5	6"	4	6	6	6	7	-8	7	7	7
6	0	5	5	5	5	1	1	6	6	- 6	2"	-3	7	7	7	3	-7	8	8	8
7	4	6	6	6	6	-3	2	7	7	7	-2"	-2	8	8	8	-1	-6	9	9	9
8	-8	7	7	7	7	-7"	3	8	8	- 8	-6"	-1	9	9	9	-5	-5	10	10	10
9	-12	8	8	8	8	-11	4	9	9	9	-10	0	10	10	10	-9	4	11	11	11
8 9 10	-16	9	9	9	9	-15	5	10	10	10	-14	1	11	11	11	-13	-3	12	12	12
11	-20	10	10	10	10	-19	6	11	11	11	-18	2	12	12	12	-17	-2	13	13	13

(二)取四色樹第二層結構作為五色樹第二層,分別以 f3⁻¹, f4⁻¹向下以及向右發展

1. 根據工作表 1 變色組合進行驗算

			A1			87	6		f _x	=1	作表	1!A5	5		
1	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
1	4	4	4	4	4	5	5	5	0	5	6	6	6	4	6
2	5	5	0	5	5	6	6	1	1	6	7	7	2	-3	7
3	6	6	-4	6	6	7	7	-3	2	7	8	8	-2	-2	8
4	7	7	-8	7	7	8	8	-7	3	8	9	9	-6	-1	9

2. 根據工作表 1 變色組合命名第二層的工作表

4. 根據我們製作的電腦演算工具,成功從(20,0,0,0,0)倒推到(0,0,0,0,20)。 但從圖片中可看出明顯(0,0,0,0,20)無法單獨用 $f3^{-1}$ 與 $f4^{-1}$ 倒推,必須 2 者結合,或者是透過 $f5^{-1}$ 才可以成功。

Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Y
4	14	-5	-5	15	0	15	4	4	16	4	16
5	15	4	4	11	1	16	-3	-3	12	-3	17
6	16	-3	-3	7	2	17	-2	-2	8	-2	18
7	17	-2	-2	3	3	18	-1	-1	4	-1	19
8	18	-1	-1	-1	4	19	0	0	0	0	20
9	19	0	0	-5	5	20	- 1	1	4	1	21
10	20	1	1	-9	6	21	2	2	-8	2	22
11	21	2	2	-13	7	22	3	3	-12	3	23
12	22	3	3	-17	8	23	4	4	-16	4	24
13	23	4	4	-21	9	24	5	5	-20	5	25
1/	24	5	5	25	10	25	6	6	2/	6	26

六、外接長方形長與寬實驗:

當 t 為 n 的倍數時,從上面的變色樹可看到從 $(t,0,0\cdots)$ 到 $(0,0\cdots,t)$ 的路徑呈彎曲狀。但如將 $f1^{-1}$ 變化的值從路徑中抽出加總,可見其為外接長方形的寬,其他 $f2^{-1}$, $f3^{-1}$, $f4^{-1}$, \cdots 變化的值相等,為外接長方形的長。加上前面提到 $f1^{-1}$, $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ 進行運算時的交換性,我們作了以下的表格:

1. 從(18, 0, 0)到(0, 0, 18), a₁, a₂改變值統計表

變色組合	a1, a2 改變值	累計
(18, 0, 0)	$a_1:0$, $a_2:0$	a ₁ :0, a ₂ :0
(0, 9, 9)	a ₁ :-18	a ₁ :-18, a ₂ :0
(4, 1, 13)	a ₂ :-8	a ₁ :-18, a ₂ :-8
(2, 2, 14)	a ₁ :-2	$a_1:-20$, $a_2:-8$
(0, 0, 18)	$a_1:-4$, $a_2:-4$	$a_1:-24$, $a_2:-12$

2. 從(20,0,0,0)到(0,0,0,20), a1, a2, a3改變值統計表

變色組合	a1, a2, a3 改變值	累計
(20, 0, 0, 0)	$a_1:0, a_2:0, a_3:0$	$a_1:0, a_2:0, a_3:0$
(2, 6, 6, 6)	a ₁ :-18	$a_1:-18, a_2:0, a_3:0$
(3, 3, 7, 7)	a_2-3	$a_1:-18, a_2:-3, a_3:0$
(4, 4, 4, 8)	a ₃ :-3	$a_1:-18, a_2:-3, a_3:-3$
(1, 5, 5, 9)	a ₁ :-3	$a_1:-21, a_2:-3, a_3:-3$
(2, 2, 6, 10)	a ₂ :-3	$a_1:-21, a_2:-6, a_3:-3$
(3, 3, 3, 11)	a ₃ :-3	$a_1:-21, a_2:-6, a_3:-6$
(0, 4, 4, 12)	a ₁ :-3	$a_1:-24, a_2:-6, a_3:-6$
(1, 1, 5, 13)	a ₂ :-3	$a_1:-24, a_2:-9, a_3:-6$
(2, 2, 2, 14)	a ₃ :-3	$a_1:-24, a_2:-9, a_3:-9$
(0, 0, 0, 20)	$a_1:-6, a_2:-6, a_3:-6$	$a_1:-30, a_2:-15, a_3:-15$

3. 從(25,0,0,0,0)到(0,0,0,0,25), a₁, a₂, a₃, a₄改變值統計表

變色組合	a1, a2, a3, a4 改變值	累計
(25, 0, 0, 0, 0)	$a_1:0, a_2:0, a_3:0, a_4:0$	$a_1:0, a_2:0, a_3:0, a_4:0$
(1, 6, 6, 6, 6)	a:-24	$a_1:-24, a_2:0, a_3:0, a_4:0$
(2, 2, 7, 7, 7)	a ₂ :-4	$a_1:-24, a_2:-4, a_3:0, a_4:0$
(3, 3, 3, 8, 8)	a ₃ :-4	$a_1:-24, a_2:-4, a_3:-4, a_4:0$
(5, 5, 5, 0, 10)	a ₄ :-8	$a_1:-24, a_2:-4, a_3:-4, a_4:-8$
(1, 6, 6, 1, 11)	a ₁ :-4	$a_1:-28, a_2:-4, a_3:-4, a_4:-8$
(2, 2, 7, 2, 12)	a ₂ :-4	$a_1:-28, a_2:-8, a_3:-4, a_4:-8$
(3, 3, 3, 3, 13)	a ₃ :-4	$a_1:-28, a_2:-8, a_3:-8, a_4:-8$
(0, 0, 0, 0, 25)	$a_1:-12, a_2:-12, a_3:-12, a_4:-$	$a_1:-40, a_2:-20, a_3:-20, a_4:-20$
	12	

4. 從(36,0,0,0,0,0)到(0,0,0,0,0,36), a1, a2, a3, a4 改變值統計表

變色組合	a1, a2, a3, a4, a5 改變值	累計
(36, 0, 0, 0, 0, 0)	$a_1:0, a_2:0, a_3:0$	$a_1:0, a_2:0, a_3:0, a_4:0, a_5:0$
(1, 7, 7, 7, 7, 7)	a ₁ :-35	$a_1:-35, a_2:0, a_3:0, a_4:0, a_5:0$
(2, 2, 8, 8, 8, 8)	a ₂ :-5	$a_1:-35, a_2:-5, a_3:0, a_4:0, a_5:0$
(3, 3, 3, 9, 9, 9)	a ₃ :-5	$a_1:-35, a_2:-5, a_3:-5, a_4:0, a_5:0$
(4, 4, 4, 4, 10, 10)	a ₄ :-5	$a_1:-35, a_2:-5, a_3:-5, a_4:-5, a_5:0$
(5, 5, 5, 5, 5, 11)	a ₅ :-5	$a_1:-35, a_2:-5, a_3:-5, a_4:-5, a_5:-5$
(6, 0, 6, 6, 6, 12)	a ₂ :-5	$a_1:-35, a_2:-10, a_3:-5, a_4:-5, a_5:-5$
(7, 1, 1, 7, 7, 13)	a ₃ :-5	$a_1:-35, a_2:-10, a_3:-10, a_4:-5, a_5:-$
		5
(8, 2, 2, 2, 8, 14)	a ₄ :-5	$a_1:-35, a_2:-10, a_3:-10, a_4:-$
		$10, a_5:-5$
(9, 3, 3, 3, 3, 15)	a ₅ :-5	a ₁ :-35, a ₂ :-10, a ₃ :-10, a ₄ :-10, a ₅ :-10
(4, 4, 4, 4, 4, 16)	a ₁ :5	a ₁ :-40, a ₂ :-10, a ₃ :-10, a ₄ :-10, a ₅ :-10
(0, 0, 0, 0, 0, 36)	a1:-20, a2:-20, a3:-20, a4:-	a ₁ :-60, a ₂ :-30, a ₃ :-30, a ₄ :-30, a ₅ :-30
	20, a5:-20	

伍、研究結果

一、三色樹觀察結果:

(一)三色樹,僅討論 f1⁻¹f2⁻¹的倒推變色組合數目

	1	1	
(t, 0, 0)	中間向右第()行	該行有()個組合	該行最上面的變色組合
(3, 0, 0)	0	2	(3, 0, 0)
	1	1	(0, 0, 3)
(4, 0, 0)	0	3	(4, 0, 0)
	1	1	(1, 0, 3)
(5, 0, 0)	0	3	(5, 0, 0)
	1	2	(2, 0, 3)
(6, 0, 0)	0	4	(6, 0, 0)
	1	2	(3, 0, 3)
	2	1	(0, 0, 6)
(7, 0, 0)	0	4	(7, 0, 0)
	1	3	(4, 0, 3)
	2	1	(1, 0, 6)
(8, 0, 0)	0	5	(8, 0, 0)
	1	3	(5, 0, 3)
	2	2	(2, 0, 6)
(9, 0, 0)	0	5	(9, 0, 0)
	1	4	(6, 0, 3)
	2	2	(3, 0, 6)
	3	1	(0, 0, 9)

(二)外接長方形的用途

從外接長方形的寬可以知道 $f1^{-1}$ 需要向下進行多少次。 從外接長方形的長可以知道 $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ …需要進行多少次。 所以我們可以根據外接長方形的長、寬來製作電腦運算模式。

(三)如何快速算出倒推組合數目:[]表示高斯符號 令 y_i 表示由中間向右數第幾行, $i \in \{0,1,2\cdots[t/3]\}$ 每一行的組合數目=[2t/3]- $2y_i$ -負數組合數=變色組合數。只要一行一行推算,即可算出全部變色組合數。

(四)當 $t \in \mathbb{Z}$ 的倍數時,令由上而下分別是 $1\sim 2t/3$ 列,x 表示列數,y 表示從中間向右數第 幾組,s 表示行下有負數的組合

18	0	0	7/2	2000		-		11 10 10 10 10 10				-		-						-
16	1	1																		
14	2	2	15	0	3															
12	3	3	13	1	4															
10	4	4	11	2	5	12	0	6												
8	5	5	9	3	6	10	1	7												
6	6	6	7	4	7	0	2	8	9	0	9									
4	7	7		S	=3					$\sqrt{1}$	10									
2	8	8								2	11	6	0	12						
0	q	9	1	7	\sim				3	3	12	4	1	13						
-2	10	10	-1	8	11	0	6	12	1	4	13	2	2	14	3	0	15			
-4	11	11	-3	9	12	-2	7	13	-1	5	14	0	3	15	1	1	16			
-6	12	12	-5	#	13	4	8	14	-3	6	15	-2	4	16	-1	2	17	0	0	18

當 t 是 3 的倍數時,我們可以得到以下統計表,「]表示高斯符號

名稱	y=0	y=1	y=2	y _i
t是偶數	$X = \frac{2t}{3}$	$X=\frac{2t}{3}-2$	$X=\frac{2t}{3}-4$	$X = \frac{2t}{3} - 2y_i$
	$S=\frac{t}{6}$	$S = \frac{t}{6}$	$S = \frac{t}{6} - 1$	$S = \frac{t}{6} - \left[\frac{y}{2}\right]$, $S > 0$
t是奇數	$X = \frac{2t}{3}$	$X = \frac{2t}{3} - 2$	$X = \frac{2t}{3} - 4$	$X=\frac{t-1}{2}-2y_i$
	$S = \frac{2t}{3} - \frac{t-1}{2}$	$S = \frac{2t}{3} - \frac{t-1}{2} - 1$	$S = \frac{2t}{3} - \frac{t-1}{2} - 1$	$S = \frac{2t}{3} - \frac{t-1}{2} - \left[\frac{y+1}{2}\right]$, $S > 0$

- 二、四色樹觀察結果(a1, a2, a3, a4)分兩層, []表示高斯符號
- (-)第一層:以 X 表示列數,p 表示外接長方形的寬,則共有 X=[p/3]列

4	A	В	C	D
1	28	0	0	0
2	25	1	1	1
3	22	2	2	1 2
4	19	3	3	3
5	16	4	4	4
6	13	5	5	4 5 6
7	10	6	6	6
8	7	7	7	7
9	4	8	8	8
10	1	9	9	9
11	-2	10	10	10
12	-2 -5	11	11	11

(二)第二層

	500	A.T.	A D	AR.	G	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ
1	1	9	9	9		10	6	10	3	11	3	11	4	12	0	12	5	13	-3	13	6	14	-6	14
	Z	ō	10	10	3	7	7	-11	4	8	4	12	5	9	1	13	6	10	-2	14	7	11	-5	15
	3	3	11	11	4	4	8	12	5	5	- 5	13	6	6	2	14	7	7	-4	15	8	8	4	16
	4	0	12	12	5	1	9	13	6	2	- 6	14	7	3	3	15	8	4	0	16	9	5	-3	17
į	- 5	-3	13	13	6	-2	10	14	7	-1	7	15	- 8	0	4	16	9	1	1	17	10	2	-2	18
	6	-6	14	14	7	-5	11	15	8	-4	- 8	16	9	-3	- 5	17	10	-2	2	18	11	-1	-1	19
-	7	-9	15	15	8	-8	12	16	9	-7	·9	17	10	-6	6	18	11	-5	- 3	19	12	-4	0	20

四色樹第二層取第一層變色組合,然後分別以 f2⁻¹, f3⁻¹向右、向下發展。 第二層工作表以第一層列數命名,如抓取第一層第4列組合則命名二-1 (三)觀察結果:

- 1. 不管 t 為多少, 第一層後面三個數字的順序與大小不改變
- 2. 因第二層是取第一層變色組合,然後分別以 f2⁻¹, f3⁻¹向右、向下發展。 所以,第二層每個工作表第四個數字在相同位置時,會相同。

3. 因第一層後面三個數字的順序與大小不改變

(四)以(28,0,0,0)為例取每個第二層工作表左上~右下對角線進行製表:(以各行 az 為重點切入) 觀察發現對角線 a2 每移動 1 格-2。所以取左上角 a2,可得[a2/2]+1 為正方形邊長格數。 另外,因 a_2 每向下 1 格-3,取左上角 a_2 ,可得 $[a_2/3]+1$ 為第 1 行正組合數,其他行類推。 當正方形邊長格數-每一行正組合數=該行負組合數。

1. (19, 3, 3, 3)、(16, 4, 4, 4)、(13, 5, 5, 5)的延伸變色組合

(1)電腦演算結果

19	3	3	3	20	4	0	4	16	4		4	17	5	1	5	10	6	2	6
20	0	4	4	21	1	1	5	18	-2	5	6	19	-1	3	7	20	0	-1	8

		Call Delivery					and the last of the last				00000000
13	5	5	5	14	6	2	6	15	7	-1	7
14	2	6	6	15	3	3	7	16	4	0	8
15	-1	7	7	16	0	4	8	17	1	1	9

(2)製表觀察:因 $f2^{-1}$ 和 $f2^{-1}$ 在正方形中的對稱性,每行負組合數加總 *2 為正方形負組合數總和

開始	(19, 3, 3, 3)	(16, 4, 4, 4)	(13, 5, 5, 5)
結束	(21, 1, 1.5)	(20, 0, 0, 8)	(17, 1, 1, 9)
外接正方形邊長	2	3	3
組合數	4	9	9
負組合數	[3/2]+1=2 (對角線與邊長皆是2格) [3/3]+1=2 (第1行正組合數有2組) 2-2=0 (表示沒有負組合數)	[4/2]+1=3,[4/3]+1=2,3-2=1 (第1行有1個負組合數) [5/3]+1=2,3-2=1 (第2行有1個負組合數) [6/3]+1=3,3-3=0 (第3行沒有負組合數) (1+1)*2=4 (此正方形中共有4個負組合數)	[5/2]+1=3,[5/3]+1=2,3-2=1 (第1行有1個負組合數) [6/3]+1=3,3-3=1 (第2行有1個負組合數) 1*2=2 (此正方形中共有2個負組合數)

2. (10, 6, 6, 6), (7, 7, 7, 7), (4, 8, 8, 8)的延伸變色組合

(1)電腦演算結果

			_	.,,			•													4	\frown										
10	6)	6	11	7	3	7	12	8	D	8	11	9	3	9	7	7	•	7	8	8	4	8	9	9		9	10	10	-2	10
11	3	7	7	12	4	4	8	13	7	1	9	14	7	-2	10	8	4	8	8	9	75	5	9	10	0	2	10	11		-1	11
12	0	8	8	13	1	5	9	14	2	2	10	15	3	-1	11	9	1	9	9	10	2	6	10	11	3	3	11	12	4	0	12
13	-3	9	9	14	-2	6	10	15	-1	3	11	16	0	0	12	10	-2	10	10	11	-1	7	11	12	0	4	12	13	1	1	13

4	8	8	8	5	9	5	9	6	10	2	10	7	11	-1	11	8	12	4	12
5	5	9	9	6	7	6	10	7	9	3	11	8	8	0	12	9	9	-3	13
6	2	10	10	7	3	7	11	8	4	4	12	9	5	1	13	10	6	-2	14
7	-1	11	11	8	0	8	12	9	1	5	13	10	2	2	14	11	3	-1	15
8	4	12	12	9	-3	9	13	10	-2	6	14	11	-1	3	15	12	0	0	16

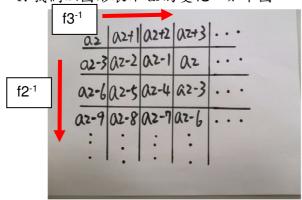
(2)製表觀察

開始 結束 外接正方形邊長 組合數 負組合數	(10, 6, 6, 6) (16, 0, 0, 12) 4 16 [6/2]+1=4, [6/2]+1=2, 4, 2=1	(7, 7, 7, 7) (13, 1, 1, 13) 4 16 [7/2]+1=4, [7/2]+1=2, 4, 2=1	(4, 8, 8, 8) (12, 0, 0, 16) 5 25 [8/2]+1=5 · [8/3]+1=3 · 5-3=2 (第1行有2個負組合數)
	[6/3]+1=3,4-3=1 (第1行有1個負組合數) [7/3]+1=3,4-3=1 (第2行有1個負組合數) [8/3]+1=3,4-3=1 (第3行有1個負組合數) [9/3]+1=4,4-4=0 (第4行沒有負組合數) (1+1+1)*2=6 (此正方形中共有6個負組合數)	[7/3]+1=3,4-3=1 (第1行有1個負組合數) [8/3]+1=3,4-3=1 (第2行有1個負組合數) [9/3]+1=4,4-4=0 (第3行沒有負組合數) (1+1)*2=4 (此正方形中共有4個負組合數)	[9/3]+1=4,5-4=1 (第2行有1個負組合數) [10/3]+1=4,5-4=1 (第3行有1個負組合數) [11/3]+1=4,5-4=1 (第4行有1個負組合數) [12/3]+1=5,5-5=0 (第5行有1個負組合數) (2+1+1+1)*2=10 (此正方形中共有10個負組合數)

3.(1,9,9,9),(-2,10,10,10),(-5,11,11,11)的延伸變色組合

(1)電腦演算結果

			4									_						- 00				
1	9 9	9		2	10	ı	5 1	0	3	11	3	11	-	4	12	0	12	-	1	.3	-3	13
2	6 10) 10		3	7		7 1	1	4	8	4	12	1	5	9	1	13	6	1	0	-2	14
3	3 11	. 11		4	4	- 8	8 1	2	5	5	5	13	- 6	6	6	2	14	- 57	7	7	-1	15
4	0 12	12		5	1		9 1	3	6	2	6	14	,	7	3	3	15	8	3	4	0	16
5	-3 13	3 13		6	-2	10	0 1	4	7	-1	7	15	8	8	0	4	16	g)	1	1	17
	101		+		798	100		-		- 00	- 10	- Charles				124				5500	7.7	
-2	10 10	10	1	11	7	11	0	12	4	12	1	13	1	13	2	14	-2	14	3	15	-5	15
-1			0	8	8	12	1	9	5	13	2	10	2	14	3	11	-1	15	4	12	4	16
0	4 12	12	1	5	9	13	2	6	6	14	3	7	3	15	4	8	0	16	5	9	-3	17
1	1 13 1	13	2	2	10	14	3	3	7	15	4	4	4	16	5	5	1	17	6	6	-2	18
2	-2 14	14	3	-1	11	15	4	0	8	16	5	1	5	17	6	2	2	18	7	3	-1	19
3	-5 15	15	4	4	12	16	5	-3	9	17	6	-2	6	18	7	-1	3	19	8	0	0	20
q-		•				•								•								
-5	11 11	11	4	12	8	12	-3	13	5	13	-2	14	2	14	-1	15	-1	15	0	16	4	16
4	8 12 .		3	9	9	13	-2	10	6	14	-1	11	3	15	0	12	0	16	1	13	-3	17
-3	5 13 .	13 -	2	6	10	14	-1	7	7	15	0	8	4	16	1	9	1	17	2	10	-2	18
-2	2 14 .	14	1	3	11	15	0	4	8	16	1	5	5	17	2	6	2	18	3	7	-1	19
-1	-1 15 .	15	0	0	12	16	1	1	9	17	2	2	6	18	3	3	3	19	4	4	0	20
0	4 16 .	16	1	-3	13	17	2	-2	10	18	3	-1	7	19	4	0	4	20	5	1	1	21


(2)製表觀察:

須注意 a1<0 與 a2, a3<0 的重複情況

開始 結束 _{外接正方形邊長}	(1, 9, 9, 9) (9, 1, 1, 17) 5	(-2, 10, 10, 10) (8, 0, 0, 20) 6	(-5, 11, 11, 11) (5, 1, 1, 21) 6
組合數	25 [9/2]+1=5, [9/3]+1=4,5-4=1 (第1行有2個負組合數) [10/3]+1=4,5-4=1 (第2行有1個負組合數) [11/3]+1=4,5-4=1 (第3行有1個負組合數) [12/3]+1=5,5-5=0 (第4行有1個負組合數) (1+1+1)*2=6 (此正方形中共有6個負組合數)	36 [10/2]+1=6, [10/3]+1=4,6-4=2 [11/3]+1=4,6-4=2 [12/3]+1=5,6-5=1 [13/3]+1=5,6-5=1 [14/3]+1=5,6-5=1 [15/3]+1=6,6-6=0 (2+2+1+1+1)*2=14 2+1=3 (a10=-2,所以共3個a10 為負數組合)	36 可以算出全部組合-全部負數嗎? 不要一行一行算 共 36 個組合, a2>0 組合數= [11/3]+1+ [12/3]+1+ [13/3]+1+ [14/3]+1+ [15/3]+1+ [16/3]+1 =4+5+5+5+6+6=31 個 36-31=5, 5*2=10 (a2<0 或 a3<0 的組合數共 14 個) (5+1)/2*5=15 (共 15 個 a1<0 的負數組合) 5-[11/3]+1=1, 1*2=2
		14+3=17 (此正方形中共有 17 個負 組合數)	(有2個重複負組合數) 10+15-2=23 (此正方形中共有23個負組合數)

(五)發現規律

1. 我們以圖形表示 a2 的變化,如下圖

- 2. 不管 ai 怎麼變動,因 az, az 大小順序不變,所以變色組合數目不變。但因為 t 總數改變, ai 的負數組合也會改變。
- (1)根據上面研究,可得以下關係表

\mathbf{a}_2	正方形邊	全部	$a_2>0$	$a_2 < 0$	a2, a3<0	$a_2, a_3 > 0$
	長	組合數	的組合數	組合數	組合數	的組合數
3	2	4	2+2=4	0	0	4-0=4
4	3	9	2+2+3=7	2	4	9-4=5
5	3	9	2+3+3=8	1	2	9-2=7
6	4	16	3+3+3+4=13	3	6	16-6=10
7	4	16	3+3+4+4=14	2	4	16-4=12
8	5	25	3+4+4+4+5=20	5	10	25-10=15
9	5	25	4+4+4+5+5=22	3	6	25-6=19
10	6	36	4+4+5+5+5+6=29	7	14	36-7=29
11	6	36	4+5+5+5+6+6=31	4	8	36-8=28

(2)發現規律數列:[]表示高斯符號

[3+i/3]+1, i≥0 可得以下數列

[3/3]+1, [4/3]+1, [5/3]+1, [6/3]+1, [7/3]+1, [8/3]+1, [9/3]+1, [10/3]+1, [11/3]+1, [12/3]+1...

取高斯符號後,可得以下數列

2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9

根據對應順序,取相應數字長度相加可得該正方形 a2>0 的組合數,例如(-5,11,11,11),正方形邊長為[11/2]+1=6 格,取列標示數字相加:

2, 2, 2, 3, 3, 3, 4, 4, <mark>4, 5, 5, 5, 6, 6</mark>, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9

可得 a₂>0 的組合數為 4+5+5+5+6+6=31 個

將全部 a2>0 的組合數列為數列,可得數列:

4, 7, 8, 13, 14, 20, 22, 29, 31 · · · · ·

- 3. 三種情況產生時機點: 令(a₁, a₂, a₃, a₄)=(t-3x, x, x, x)
- (1)行下有負數,也就是 $a_2<0$ 的情況: [t/2]-[t/3]>0 時,該正方形行下有負數。
- (2)x=[t/n]+1 時開始 ai<0,該正方形共有(ai+1)/2*ai 個 ai<0 負數組合。
- (3)重複負數組合:當 t-3x-[x/3]+1>0 時,該正方形有重複負組合數。

三、五色樹觀察結果

- (一)第一層結構和三色樹結構類似,從下面圖形比較可發現相同與不同之處
- 1. 電腦運算結果

三色樹(18,0,0)

18	0	0																		
16	1	1																		
14	2	2	15	0	3															
12	3	3	13	_1	4															
10	4	4	11	2	5	12	0	6												
8	5	5	9	3	6	10	1	7												
6	6	6	7	4	7	8	2	8	9	0	9									
4	7	7	5	5	8	6	2 3	9	7	1	10									
2	8 9	8	3	6	9	4	4	10	5	2	11	6	0	12						
0	9	9	1	7	10	2	5	11	3	3	12	4	1	13						
-2	10	10	-1	8	11	0	6	12	1	4	13	2	2	14	3	0	15			
4	11	11	-3	9	12	-2	7	13	-1	5	14	0	3	15	1	1	16			
-6	12	12	-5	10	13	4	8	14	-3	6	15	-2	4	16	-1	2	17	0	0	18

五色樹(18,0,0,0,0)第一層

18	0	0	0	0					-1											i i i i i											
14	1	1	1	1																											
10	2	2	2	2																											
6	3	3	3	3																							□ \(\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
2	4	4	4	4	3	0	5	-5	5	4	4	6	6	6	5	-8	7	7	7	6 -12	8	- 8	8	7 -16	9	9	9	8 -20	10	10	10
-2	5	5	5	5	-1	1	6	6	6	0"	-3	7	7	7	1	-7	8	8	8	2 -11	9	9	9	3 -15	10	10	10	4 -19	11	11	11
-6	6	6	6	6	-5	2	7	7	7	4'	-2	8	8		-3													0 -18			
-10	7	7	7	7	-9	3	8	8	8	-8"	1	9	9	9	-7"	-5	10	10	10	-6"-9	11	11	11	-5 -13	12	12	12	4 -17	13	13	13

- 2. 比較:以(a1, a2, a3)和(a1, a2, a3, a4, a5)表示變色組合
- (1)相同處
- a. 皆以 f1⁻¹, f2-1 進行向下、右推算。
- b. n 表示顏色數量。兩者皆在 a2=(n-1)時可向右發展
- c. 向右與向下發展時,數字 a3 只會增加不會減少
- (2)不同處
- a. 變色組合從三元素變成五元素
- b. 階梯高度從 2 格變 4 格,
- c. 底下數字變化從(-2,-1)變成(-4,-3,-2,-1)
- d. 每次向下一格, aı 從-2 變成-4
- e. 每向右一格, az 從-2 變成-4
- f. 階梯最頂端變色組合的 a1,從每次-3到每次-15

(二)第二層結構和四色樹第二層結構類似,從下面圖形發現規律

1. 電腦運算結果

60	10	10	10	10	61	11	11	6	11	62	12	12	2	12	63	13	13	-2	13
61	11	6	11	11	62	12	7	7	12	63	13	8	3	13	64	14	9	-1	14
62	12	2	12	12	63	13	3	8	13	64	14	4	4	14	65	15	5	0	15
63	13	-2	13	13	64	14	-1	9	14	65	15	0	5	15	66	16	1	1	16

2. 規律:

- (1)不管 t 為多少,第一層後面 3 個數字的順序與大小不改變
- (2)對角線 a₃, a₄數字會相同,因每次變化-3,所以最右下角 a₃, a₄數字可能為1、2、3

四、如何收斂於同一顏色與最短路徑

- (一)最短路徑不唯一:只要不進行 fn⁻¹就不會構成迴圈,即為最短路徑。
- (二)最短路徑條件:若變色組合(a_1, a_2, a_3, a_4 …)收斂為(t, 0, 0, 0…),則除了 a_1 之外,任2數字相減為n的倍數。
- (三)按照各層關係列聯立方程式解答,然後進行 $f1\sim f(n-1)$ 的運算,可收斂於 $(t,0,0,0\cdots)$ 。 (四)範例:以五色數變色組合(19,3,23,18,38)為例:
- 1.19-3=16,23-3=20,18-3=15,…根據計算可知收斂於數字19的位置。
- 2.38 為19 外最大數字,因此可知不進行f5。
- 3. 令從(19,3,23,18,38)到(101,0,0,0,0)分別要進行 x 個 $f1,y_1$ 個 $f2,y_2$ 個 f3···依此類推。且從五色樹電腦運算中可知進入第二層時會是 $(19+4x-y_1,3-x+4y_1.k,k,k)$ 的模式。從倒推的角度來看,可得到下面聯立方程式:

$(1)k-4y_2+y_3=23$	$(1)y_2=3$
$(2)k-4y_3+y_2=18$	$(2)y_3=4$
$(3)k+y_2+y_3=38$	(3)k=31

了解第二層開頭是(19+4x-y₁, 3-x+4y₁. 31, 31, 31)時,可以再到推出3個聯立方程式

$(1)3x+3y_1=3*31$	$(1)x+y_1=31$
(2)101-4x+a2+7=19	(2)x=24
$(3)x-4y_1+7=3$	$(3)y_1=7$

4. 根據獲得 a₁, a₂, a₃…我們可以完成從(19, 3, 23, 18, 38)到(101, 0, 0, 0, 0)的最短步驟

變色組合	進行運算
(19, 3, 23, 18, 38)	+7f2
(12 , 31 , 16 , 11 , 31)	+4f4
(8 , 27 , 12 , 27 , 27)	+3f3
(5 , 24 , 24 , 24 , 24)	+24f1
(101 , 0 , 0 , 0 , 0)	→完成

五、外接長方形與變色組合數計算

(一)外接長方形長、寬統計表:根據實驗六,我們製作了以下表格。h=寬-t (t 為組合中數字加總)

起點	中轉	終點	長	寬	h
(18, 0, 0)	(-6, 12, 12)	(0, 0, 18)	12	24	6
(20, 0, 0, 0)	(-10, 10, 10, 10)	(0, 0, 0, 20)	15	30	10
(25, 0, 0, 0, 0)	(-15, 10, 10, 10, 10)	(0, 0, 0, 0, 25)	20	40	15
(36, 0, 0, 0, 0, 0)	(-24, 10, 10, 10, 10, 10)	(0, 0, 0, 0, 0, 36)	30	60	24

(二)我們將外接長方形的寬以 p 代表,組合中數字加總以 t 代表。根據上表,可列出 2 個多項式,進行簡化得到關係式

不同變色樹	h,p關係式	p, t 關係式	簡化結果
三色變色樹	$h=\frac{1}{4}p$	$t+\frac{1}{4}p=p$	$p = \frac{4}{3}t$, $h = \frac{1}{4}p$
四色變色樹	$h=\frac{2}{6}p$	$t+\frac{2}{6}p=p$	$p = \frac{6}{4}t + h = \frac{2}{6}p$
五色變色樹	$h=\frac{3}{8}p$	$t+\frac{3}{8}p=p$	$p = \frac{8}{5}t + h = \frac{3}{8}p$
六色變色樹	$h=\frac{4}{10}p$	$t+\frac{2}{5}p=p$	$p = \frac{10}{6}t$, $h = \frac{2}{5}p$
n 色變色樹	$h = \frac{n-2}{2*(n-1)}p$	$t + \frac{n-2}{2*(n-1)}p = p$	$p = \frac{2*(n-1)}{n}t$, $h = \frac{n-2}{n}t$

陸、討論

- 一、f1, f2, f3…等改變對變色組合的影響
- (一)目前已知規律
- 1. f 具交換性,所以先後不影響產生組合
- 2.n 種變色龍只需要討論(n-1)種模式
- 3. 數字交換情況
- (二)三色樹時:
- 1. 在 t=3k 時,如將所有組合表示為 (a_1,a_2,a_3) ,則可在組合中找到 (a_1,a_2,a_3) 的所有排列。
- 2. 在 t=3k+1 或 3k+2 時,可在組合中找到(a₁, a₂, a₃)與(a₁, a₃, a₂)。

若是以(0,t,0)倒推,可找到 (a_2,a_1,a_3) 與 (a_3,a_1,a_2) ,以(0,0,t)倒推,可找到 (a_2,a_3,a_1) 與 (a_3,a_2,a_1) 。

- (三)四色樹時:若以 f1⁻¹, f2⁻¹, f3⁻¹順序倒推得到(a₁, a₂, a₃, a₄)
- 1. 可以 f1⁻¹, f2⁻¹, f4⁻¹順序倒推得到(a₁, a₂, a₄, a₃)
- 2. 根據上點,將各變色組合倒推順序整理如下

變色組合	(a_1, a_2, a_3, a_4)	(a_1, a_2, a_4, a_3)	(a_1, a_3, a_2, a_4)
順序	f1 ⁻¹ , f2 ⁻¹ , f3 ⁻¹	f1 ⁻¹ , f2 ⁻¹ , f4 ⁻¹	f1 ⁻¹ , f3 ⁻¹ , f2 ⁻¹
變色組合	(a_1, a_3, a_4, a_2)	(a_1, a_4, a_2, a_3)	(a_1, a_4, a_3, a_2)
順序	f1 ⁻¹ , f3 ⁻¹ , f4 ⁻¹	f1 ⁻¹ , f4 ⁻¹ , f2 ⁻¹	f1 ⁻¹ , f4 ⁻¹ , f3 ⁻¹

3. 若需出現(a₂, a₁, a₃, a₄),可以 f2⁻¹, f1⁻¹, f3⁻¹順序倒推,其他類推

二、如何確定全部列舉完畢

- 1. 最遠距離定義:經過操作,不遠迴圈,可操作最多的步數為最遠距離
- 2. 最遠距離:

在 n 種變色龍, 共有 t 隻變色龍下, 從 $(t,0,0,0,\dots)$ 到 $(0,0,0,0,\dots,t)$ 為最 遠距離

- 3. 根據上面與討論一,只要找出最遠距離的 f, 並將其排列, 就可以知道總數與深度和寬度。
- 4. 在 n 種變色龍時, 共有幾種變色樹探討:
- (1)在 t=nk 時,僅有一種變色樹
- (2)t不為n的倍數時,開頭有n種,結尾有(n-1)種。且因為t不為n的倍數,所以
- (t, 0, 0, 0...)無法倒推到(0, 0, 0, 0, ...t), 所以有 n*(n-1)種變色樹

三、考慮到實際可倒推組合數

- (一)在 t=nk 時,可從 $(t-(n-1)^2, n-1, n-1, n-1\cdots)$ 開始倒推,直到 $(n-2, n-2, n-2\cdots, t-(n-1)*(n-2))$ 結束。
- (二)在 t=nk+z, $z\in\{1,2\cdots(n-1)\}$ 時,從 $(t-(n-1)^2,n-1,n-1,n-1\cdots)$ 開始倒推,我們先以五色樹與六色樹為範例

1. 五色樹範例

步數	t=5*3+1	t=5*3+2	t=5*3+3	t=5*3+4
第1步	(4, 3, 3, 3, 3)	(5, 3, 3, 3, 3)	(6, 3, 3, 3, 3)	(7, 3, 3, 3, 3)
第2步	(0, 4, 4, 4, 4)	(1, 4, 4, 4, 4)	(2, 4, 4, 4, 4)	(3, 4, 4, 4, 4)
第3步	(1, 0, 5, 5, 5)	(2, 0, 5, 5, 5)	(3, 0, 5, 5, 5)	(4, 0, 5, 5, 5)
第4步	(2, 1, 1, 6, 6)	(3, 1, 1, 6, 6)	(4, 1, 1, 6, 6)	(5, 1, 1, 6, 6)
第5步	(3, 2, 2, 2, 7)	(4, 2, 2, 2, 7)	(5, 2, 2, 2, 7)	(6, 2, 2, 2, 7)
第6步		(0, 3, 3, 3, 8)	(1, 3, 3, 3, 8)	(2, 3, 3, 3, 8)

2. 六色樹範例

t=6*4+1	t=6*4+2	t=6*4+3	t=6*4+4	t=6*4+5
(5, 4, 4, 4, 4, 4)	(6, 4, 4, 4, 4, 4)	(7, 4, 4, 4, 4, 4)	(8, 4, 4, 4, 4, 4)	(9, 4, 4, 4, 4, 4)
(0, 5, 5, 5, 5, 5)	(1, 5, 5, 5, 5, 5)	(2, 5, 5, 5, 5, 5)	(3, 5, 5, 5, 5, 5)	(4, 5, 5, 5, 5, 5)
(1, 0, 6, 6, 6, 6)	(2, 0, 6, 6, 6, 6)	(3, 0, 6, 6, 6, 6)	(4, 0, 6, 6, 6, 6)	(5,0,6,6,6,6)
(2, 1, 1, 7, 7, 7)	(3, 1, 1, 7, 7, 7)	(4, 1, 1, 7, 7, 7)	(5, 1, 1, 7, 7, 7)	(6, 1, 1, 7, 7, 7)
(3, 2, 2, 2, 7, 8)	(4, 2, 2, 2, 8, 8)	(5, 2, 2, 2, 8, 8)	(6, 2, 2, 2, 8, 8)	(7, 2, 2, 2, 8, 8)
(4, 3, 3, 3, 3, 9)	(5, 3, 3, 3, 3, 9)	(6, 3, 3, 3, 3, 9)	(7, 3, 3, 3, 3, 9)	(8, 3, 3, 3, 3, 9)
	(0, 4, 4, 4, 4, 10)	(1, 4, 4, 4, 4, 10)	(2, 4, 4, 4, 4, 10)	(3, 4, 4, 4, 4, 10)


3. 從上面表格可以知道

- (1)當 t=n*k+1 時,以 $(n-2, n-3, n-3\dots, t-(n-2)^2)$ 結束
- (2)當 t=n*k+2 時,以 $(0, n-2, n-2, n-2, n-2, t-(n-2)^2)$ 結束,
- 當 t=n*k+3 時,以(1,n-2,n-2,n-2···, t-(n-2)²)結束,
- 當 t=n*k+4 時,以(2,n-2,n-2,n-2···, t-(n-2)²)結束,

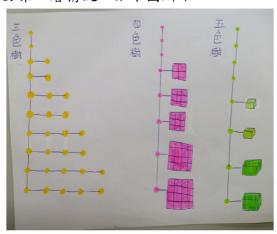
其他類推。

四、關於四色樹的發現:

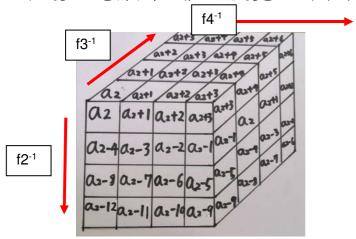
在進行四色樹第二層的電腦運算時,我們發現 a2>0 且 a3>0 的組合數似乎有特殊的規律,而這個規律似乎與平方數相關,所以我們將第二層中的 a2, a3 單獨拉出,列成工作表,並將其中不同的正方形著色,如下圖。

在經過著色觀察後,我們發現四色樹中第二層 a2>0 且 a3>0 的組合數規律,並製作下表。

第二層開頭時 a2=?	3	4	5	6	7	8	9
組合數	4	5	7	10	12	15	19
以平方數加減表示	2^2	2 ² +1 ²	$2^2+2^2-1^2$	3 ² +1 ²	$3^2+2^2-1^2$	$3^2+3^2-2^2+1^2$	$4^2+2^2-1^2$


第二層開頭時 a2=?	10	11	12	13	14
組合數	22	26	31	35	40
以平方數加減表示	4 ² +3 ² -2 ² +1 ²	$4^2+4^2-3^2+2^2-1^2$	$5^2+3^2-2^2+1^2$	$5^2+4^2-3^2+2^2-1^2$	$5^2+5^2-4^2+3^2-2^2+1^2$

根據上表,我們可將 a2 分成 3k, 3k+1, 3k+2 三種模式,下表為各模式對應公式


a ₂ =?	四色樹中第二層 a2>0 且 a3>0 的組合數量
3k	$(k+1)^2 + (k-1)^2 - (k-2)^2 + \cdots + 1^2$, $k=1$ 時例外
3k+1	$(k+1)^2+k^2-(k-1)^2+(k-2)^2-\cdots 1^2$
3k+2	$(k+1)^2 + (k+1)^2 - k^2 + (k-1)^2 - (k-2)^2 + \dots + 1^2$

五、五色樹運算變化

- (一)從三色樹、四色樹觀察可知五色樹第二層結構可以是立方體
- 1. 第二層情況:如下圖所示

2. a2的改變:五色樹中第二層立方體變色組合(a1, a2, a3, a4, a5)中 a2的變化示意圖

- (二)五色樹第二層:取第一層變色組合(a_1 , a_2 , a_3 , a_4 , a_5)進行 $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ 發展立方體結構 1. 第二層為邊長[$a_2/2$]+1 個變色組合的立方體,該立方體包含($[a_2/2]+1$)³個變色組合。
- 2. 第一行正組合數= $[a_2/2]+1$,第一行行下負數組合數= $[a_2/2]-[a_2/4]$ 計算 $a_2<0$ 或 $a_3<0$ 或 $a_4<0$ 的負數組合數時,與四色樹不同,須注意 $a_2<0$ 且 $a_3<0$ 之類的情況。
- 3. ai<0 的變色組合數:
- (1)左上角 a₁<0 且|a1|≤[a₂/2]+1,該立方體 a₁<0 的變色組合數=
- $\lceil (|a1|+1)*|a1| \rceil / 2 + \lceil (|a1+1|+1)*|a1+1| \rceil / 2 + \lceil (|a1+2|+1)*|a1+2| \rceil / 2 + \cdots \lceil (|-1|+1)*|-1| \rceil / 2$
- (2)若 |a1|>[a2/2]+1 則該行負組合數以[a2/2]計算

六、從變色龍變色組合條件出發的另一種計算變色組合數量方式

(-)變色組合條件:如同之前提到在三色樹中變色組合 (a_1,a_2,a_3) 如果收斂在 a_1 的位置,則 a_2 - a_3 是 3的倍數;四色樹中變色組合 (a_1,a_2,a_3,a_4) 如果收斂在 a_1 的位置,則 a_2 - a_3 , a_2 - a_4 都是 4的倍數,其他色樹根據變色條件可知道有相似規律。

這不禁讓我們思考:反過來說,若列出 (a_1, a_2, a_3) 三數且 $a_1+a_2+a_3=t$,是否滿足 a_2-a_3 是 3 的倍數此一條件,就可最後收斂於(t, 0, 0)呢?

(二)三色樹(18,0,0)實驗:根據條件,我們可以列出下表數字組合

a ₃ -a ₂ =?	$a_3-a_2=3$	$a_3-a_2=6$	$a_3-a_2=9$	a ₃ -a ₂ =12	a ₃ -a ₂ =15	$a_3-a_2=0$
根據條	(a ₁ ,a ₂ ,a ₃)	(a ₁ ,a ₂ ,a ₃)	(a ₁ ,a ₂ ,a ₃)	(a1 ,a2 ,a3)	(a1 ,a2 ,a3)	(a ₁ ,a ₂ ,a ₃)
件列出	(15, 0, 3)	(12 ,0 ,6)	(9, 0, 9)	(6, 0, 12)	(3,0,15)	(18 ,0 ,0)
的組合	(13 ,1 ,4)	(10 ,1 ,7)	(7, 1, 10)	(4 ,1 ,13)	(1, 1, 16)	(16 ,1 ,1)
	(11 ,2 ,5)	(8, 2, 8)	(5, 2, 11)	(2,2,14)		(14 ,2 ,2)
	(9, 3, 6)	(6, 3, 9)	(3 ,3 ,12)	(0, 3, 15)		(12 ,3 ,3)
	(7,4,7)	(4 ,4 ,10)	(1 ,4 ,13)			(10 ,4 ,4)
	(5, 5, 8)	(2 ,5 ,11)				(8, 5, 5)
	(3,6,9)	(0 ,6 ,12)				(6, 6, 6)
	(1,7,10)					(4 ,7 ,7)
						(2, 8, 8)
						(0, 9, 9)

(三)四色樹(20,0,0,0,0)實驗:根據條件,我們可以列出下表數字組合

若收斂在數字 a1,則 a2-a3, a2-a4, a3-a4 皆是 4 的倍數

4的倍數	$a_3-a_2=0$,				
	$a_4-a_3=0$	$a_4-a_3=4$	$a_4-a_3=8$	$a_4-a_3=12$	$a_4-a_3=16$
根據條件	(20 ,0 ,0 ,0)	(16 ,0 ,0 ,4)	(12 ,0 ,0 ,8)	(8 ,0 ,0 ,12)	(4 ,0 ,0 ,16)
列出的組	(17 ,1 ,1 ,1)	(13 ,1 ,1 ,5)	(9, 1, 1, 9)	(5 ,1 ,1 ,13)	(1 ,1 ,1 ,17)
合	(14 ,2 ,2 ,2)	(10 ,2 ,2 ,6)	(6 ,2 ,2 ,10)	(2 ,2 ,14)	
	(11 ,3 ,3 ,3)	(7, 3, 3, 7)	(3 ,3 ,3 ,11)		
	(8 ,4 ,4 ,4)	(4 ,4 ,4 ,8)	(0 ,4 ,4 ,12)		
	(5, 5, 5, 5)	(1 ,5 ,5 ,9)	(4, 8, 8, 0)		
	(2 ,6 ,6 ,6)				

(四)驗證:我們將上面的數字組合與變色組合一個一個驗證互相比對,發現根據變色條件列 出的數字組合,在經過順序排列後,就是全部的變色組合。

柒、結論

一、根據實驗結果的模型與討論一,可知 $(t,0,0,0,\cdots)$ 以 $f1^{-1}$, $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ …順序倒推,如果出現 $(a_1,a_2,a_3,a_4\cdots)$,則可改變 fn^{-1} 順序獲得相同數字,不同排列的變色組合。因此想要列舉全部變色組合,可用 $f1^{-1}$, $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ …, $f(n-1)^{-1}$ 倒推出全部變色組合,剩下組合依倒推順序改變進行列舉。

二、三色樹全部組合數目,t表示變色龍總數

(一)v 表示從中間向右數的行數

- 1. 當 t=3k 時,y∈{0,1,2,3 $\sim \frac{t}{3}$ +1}
- 2. 當 t=3k+1 時,y∈ $\{0, 1, 2, 3\sim \frac{t-1}{3}+1\}$
- 3. 當 t=3k+2 時,y∈{0,1,2,3 $\sim \frac{t-2}{3}$ +1}

(二)x 表示該行的組合數目

- 1. 當 t 是偶數時, $x = \frac{2t}{3} 2y$
- 2. 當 t 是奇數時, $x = \frac{t-1}{2} 2y$
- (三) s表示行下有負數的組合數
- 1. 當 t 是偶數時, $S = \frac{t}{6} [\frac{y}{2}]$,S > 0
- 2. 當 t 是奇數時, $S = S = \frac{2t}{3} \frac{t-1}{2} \left[\frac{y+1}{2}\right]$, S > 0
- (四)令各行有效組合數為 g

g₀=x₀-h₀, g₁=x₁-h₁…依此類推

則在三色樹中以 $f1^{-1}f2^{-1}$ 用電腦可推得變色組合數= $\sum_{0}^{[t/3]}$ gi

(五)三色樹變色組合通式:令 X 表示由上而下第幾列,Y 表示從中向外數第幾個變色組合。以 f(t,x,y)=f(總和 t,第 X 層,第 Y 個 $)=(a_1,a_2,a_3)$,表達所有三色樹中變色組合。我們可以列出下面 3 個關係表:

1. 最後收斂於(t, 0, 0)時:

方向	aı	\mathbf{a}_2	a ₃	X	У
變色樹右邊	t-2x+y	x-2y	x+y	$a_2+2*a_3/3$	$a_3-a_2/3$
變色樹左邊	t-2x+y	x+y	x-2y	$2*a_2+a_3/3$	$a_2-a_3/3$

2. 最後收斂於(0, t, 0)時:

方向	aı	\mathbf{a}_2	a ₃	X	У
變色樹右邊	x-2y	t-2x+y	x+y	$2*a_3+a_1/3$	$a_3-a_1/3$
變色樹左邊	x+y	t-2x+y	x-2y	$2*a_1+a_3/3$	$a_1-a_3/3$

3. 最後收斂於(0, 0, t)時:

方向	aı	\mathbf{a}_2	\mathbf{a}_3	X	у
變色樹右邊	x-2y	x+y	t-2x+y	$2*a_2+a_1/3$	$a_2-a_1/3$
變色樹左邊	x+y	x-2y	t-2x+y	$a_2+2*a_1/3$	$a_1-a_2/3$

從上表可以得知,若收斂於 a1,則 a2-a3會是 3的倍數,其他狀況類推。

三、四色樹變色組合數:若以 f1-1f2-1f3-1 倒推可得以下變色組合

(-)第一層:以(t,0,0,0)進行 $f1^{-1}$,可得 [2t/4]+1 組變色組合 (a_1,a_2,a_3,a_4) 完成第一層後,抓取每一個變色組合到第二層進行

(二)第二層第一種情況:全部無負數

令左上角變色組合為 (a_1, a_2, a_3, a_4) ,正方形邊長組合數= $[a_2/2]+1$,全部組合數 $([a_2/2]+1)^2$

(三)第二層第二種情況:僅行下有負數

負數組合數= ${\sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i)/3]}*2$

此情況下根據電腦運算發現的規律也可以根據下表計算組合數量

a2=?	四色樹中第二層 a2>0 且 a3>0 的組合數量
3k	(k+1) ² +(k-1) ² -(k-2) ² +…1 ² , k=1 時例外
3k+1	$(k+1)^2+k^2-(k-1)^2+(k-2)^2-\cdots 1^2$
3k+2	$(k+1)^2+(k+1)^2-k^2+(k-1)^2-(k-2)^2+\cdots 1^2$

第二種情況全部組合數= $([a_2/2]+1)^2-(a_2<0)$ 的組合數)*2

(四)第二層第三種情況:

- 1. 行下有負數, $a_i < 0$ 且 $|a_i| \le [a_i/2] + 1$ 時,共有負數組合數= $\sum_{i=0}^{|a_i|} i$
- 2. 行下有負數, $a_1<0$ 且 $|a_1|>[a_2/2]+1$ 時,令 $g=|a_1|-\left[\frac{a_2}{2}\right]-1$

負數組合數=($[a_2/2]+1$)*g+ $\sum_{i=a+1}^{[a_2/2]+1} i$

由 $1 \cdot 2$ 可知:第三種情況全部組合數= $([a_2/2]+1)^2-(a_2<0$ 的組合數)*2- $a_1<0$ 的組合數

(五)第二層第四種情況:行下有負數,al為負數,且2種組合有重複

1. a₁<0 且|a1|≤[a₂/2]+1 時

重複負數組合數=
$$\left[\sum_{i=0}^{\left[\frac{a^2}{2}\right]} |a1+i| - \left[\frac{a^2+i}{3}\right] - 1\right] * 2$$
, $|a1+i| - \left[\frac{a^2+i}{3}\right] - 1 > 0$

2. a1<0 且|a1|>[a2/2]+1 時,令 g=|a1| $-\left[\frac{a2}{2}\right]-1$

重複負數組合數=
$$\left[\left(\sum_{i=0}^g \left(\left[\frac{a^2}{2}\right] - \left[\frac{a^2+i}{3}\right]\right) + \sum_{i=g+1}^{\left[\frac{a^2}{2}\right]} |a1+i| - \left[\frac{a^2+i}{3}\right] - 1\right] * 2$$
, $|a1+i| - \left[\frac{a^2+i}{3}\right] - 1 > 0$

第四種情況全部組合數= $([a_2/2]+1)^2-(a_2<0)$ 的組合數)*2 - $a_1<0$ 的組合數+全部重複組合數

(六) 由(一)、(二)、(三)、(四)和(五)可知:

四色變色組合數=全部組合數-負組合數+重複負數組合數

四、五色樹變色組合數:若以 f1⁻¹f2⁻¹f3⁻¹f4⁻¹ 倒推可得以下變色組合

(-) 第一層:以(t,0,0,0,0)進行 $f1^{\text{--}}$,可得 [2t/5]+1 組變色組合 $(a_{\text{--}},a_{\text{--}},a_{\text{--}})$

完成第一層後,抓取每一個變色組合到第二層進行。

將每個立方體左上角變色組合表示為(a1, a2, a3, a4)可得以下公式。

(二)第二層第一種情況:全部無負數

立方體邊長組合數= $[a_2/2]+1$,全部組合數= $([a_2/2]+1)^3$

(三)第二層第二種情況:僅行下有負數

整個立方體中 $a_2 < 0$ 的負數組合數= $\sum_{j=0}^{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} [a2/2] - [(a2+i+j)/4]$

從對稱結構可知 $a_2 < 0$ 同類的負數組合數= $\left(\sum_{i=0}^{\lfloor a^2/2 \rfloor} \sum_{i=0}^{\lfloor a^2/2 \rfloor} [a^2/2] - [(a^2+i+j)/4]\right)*3$

 $a_2 < 0$ 且 $a_3 < 0$ 的負數組合數= $\sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i)/3]$

從對稱結構可知 $a_2 < 0$ 且 $a_3 < 0$ 同類的負數組合數= $(\sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i)/3])*3$

該立方體中 a2<0 或 a3<0 或 a4<0 的組合數= $(\sum_{j=0}^{[b/2]}\sum_{i=0}^{[a2/2]}[a2/2]-[(a2+i+j)/4])$ *3- $(\sum_{i=0}^{[b/2]}[b/2]-[(b+i)/3])$ *3

第二種情況全部組合數= $([a_2/2]+1)^3-(a_2<0)$ 的組合數)*3+ $(a_2<0]$ 且 $a_3<0$ 的組合數)*3

(四)第二層第三種情況:

1. 行下有負數, a₁為負數且|a1|≤[a2/2]+1,根據階差公式可得:

該立方體中 $a_i < 0$ 的變色組合數= $\sum_{j=0}^{|a_1|} \sum_{i=0}^{j} i$

2. 行下有負數, a_1 為負數且|a1|>[a2/2]+1,令 g 代表 $|a1|-\left\lceil\frac{a2}{2}\right\rceil-1$

負數組合數=(
$$[a2/2]+1$$
)* $\sum_{j=0}^{g} \sum_{i=0}^{j} i + \sum_{j=g+1}^{g} i + \sum_{i=g+1}^{g} i$

由 $1 \cdot 2$ 可知:第三種情況全部組合數= $([a_2/2]+1)^3$ - $(a_2<0$ 的組合數)* $3+(a_2<0$ 且 $a_3<0$ 的組合數)*3 - $a_1<0$ 的組合數

(五)第二層第四種情況:

- 1. a2<0 與 a1<0 的重複組合數:
- (1)a1<0 且|a1|≤[a₂/2]+1 時

重複負數組合數= $\left[\sum_{j=0}^{\left[a2/2\right]}\sum_{i=0}^{\left[a2/2\right]}|a1+i+j|-\left[\frac{a2+i+j}{4}\right]-1\right]*3$, $|a1+i+j|-\left[\frac{a2+i+j}{4}\right]-1>0$

(2)al<0 且|a1|>[a2/2]+1 時,令|a1|-[a2/2]-1=g

重複負數組合數=[($\Sigma_{j=0}^g \sum_{i=0}^g (\left[\frac{a2}{2}\right] - \left[\frac{a2+i+j}{4}\right]) + \sum_{i=g+1}^{\left[\frac{a2}{2}\right]} |a1+i+j| - \left[\frac{a2+i+j}{4}\right] - 1]*3$,

$$|a1 + i + j| - \left[\frac{a2 + i + j}{4}\right] - 1 > 0$$

- 2. 令 a2<0 且 a3<0 與 a1<0 的重複組合數
- (1)a1<0 且|a1|≤[a2/2]+1 時,

重複負數組合數=[$\sum_{i=0}^{[a2/2]}$ |a1+i| $-\left[\frac{a2+i}{3}\right]-1$]*3 , |a1+i| $-\left[\frac{a2+i}{3}\right]-1>0$

(2)a1<0 且|a1|>[a2/2]+1 時,令 g=|a1| $-\left\lceil \frac{a2}{2}\right\rceil - 1$

重複負數組合數= $\left[\left(\sum_{i=0}^{g}\left(\left[\frac{a^2}{2}\right]-\left[\frac{a^2+i}{3}\right]\right)+\sum_{i=g+1}^{\left[\frac{a^2}{2}\right]}|a^2+i|-\left[\frac{a^2+i}{3}\right]-1\right]*3$

$$|a1i| - \left[\frac{a2+i}{3}\right] - 1 > 0$$

由 $1 \cdot 2$ 可知:全部重複組合數= $(a_2 < 0$ 與 $a_1 < 0$ 的重複組合數)*3- $(a_2 < 0$ 且 $a_3 < 0$ 與 $a_1 < 0$ 的重複組合數)*3

第四種情況全部組合數= $([a_2/2]+1)^3$ - $(a_2<0$ 的組合數)*3+ $(a_2<0$ 且 $a_3<0$ 的組合數)*3 - $a_1<0$ 的組合數+全部重複組合數

(六)由(一)、(二)、(三)、(四)和(五)可知:

五色樹第二層一個立方體的全部變色組合數=

立方體數量 $-\{a2<0$ 或 a3<0 或 $a4<0\}$ 數量 $-\{a1<0\}$ 數量 $+\{a2<0$ 或 a3<0 或 $a4<0\}$ $\cap \{a1<0\}$ 數量

五、n種變色龍,全部有 t 隻時,變色組合數量計算

(-)第一層:以(t,0,0,0,0,0...)進行 $f1^{-1}$,可得 [2t/n]+1 組變色組合(a1,a2,a3,a4)完成第一層後,抓取每一個變色組合到第二層進行

(二)第二層第一種情況:全部無負數

令左上角變色組合為(a1, a2, a3, a4, a5..., n),邊長組合數=[a2/2]+1,全部組合數= $([a2/2]+1)^{n-2}$ (三)第二層第二種情況:

- $1. \ a2 < 0 \ 與類似狀況負數組合數 = \{ \sum_{k=0}^{\lfloor b/2 \rfloor} \sum_{j=0}^{\lfloor b/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} \sum [a2/2] [(a2+i+j+k+\cdots)/(n-1)] \} * n = 0 \}$
- 2. a2<0 且 a3<0 與類似狀況負數組合數= $\left\{\sum_{k=0}^{\lfloor b/2\rfloor}\sum_{j=0}^{\lfloor a2/2\rfloor}\sum$ $\left[a2/2\right]-\left[(a2+j+k+\cdots)/(n-2)\right]\right\}*C_2^n$
- 3.~a2<0 且 a3<0 且 a4<0 與類似狀況負數組合數= $\{\sum_{k=0}^{[a2/2]}\sum.....[a2/2]-[(a2+k+\cdots)/(n-3)]\}*c_3^n$
- 4. 其他情形類推,並根據排容原理進行算式計算可得全部 a2<0 或 a3<0 或 a4<0···組合數
- (四)第二層第三種情況:行下有負數,且 al 為負數,根據階差公式可得
- al<0 時,負數組合數=C|a1|+n-3
- (五)第二層第四種情況:行下有負數,al為負數,且2種組合有重複
- (六)n 色變色組合數=全部組合數-負組合數

六、如何用最短路徑收斂於同一種顏色

- (一)收斂同一種顏色的條件:在 n 色變色組合(a1, a2, a3…, an)中,除了 a1之外,其他任兩數 相減為 n 的倍數,則收斂於 $(t,0,0,\cdots)$ 。
- (二)收斂於同一種顏色的方法

在 n 色樹中的變色組合($a_1, a_2, a_3, \dots, a_n$)中,若最後收斂為($t, 0, 0, 0, \dots$)。

在收斂的過程中,

- \uparrow f1=(-(n-1), +1, +1, +1....), f2=(+1, -(n-1), +1, +1,), f3=(+1, +1, -(n-1), +1,)
- 且 f1 需做 x 次, f2 需做 y1 次, f3 需做 y2 次... fn 不用做,可知:
- 1.a2, a3, a4... 任 2 數相減為 n 的倍數, 如果 a1 也是如此,則可收斂於(t, 0, 0, 0..., 0),
- 2. 可列出以下算式
- $(1)a1=t-(n-1)*x+v1+v2+v3\cdots$
- (2)a2=x-(n-1)*y1+y2+y3...
- (3)a3=x+y1-(n-1)*y2+y3...

......其餘算式類推。

令 Z 為變色組合最後一個數字,可列出算式

 $z=x+v1+v2+v3\cdots$

根據上述算式可解出 x, y1, y2, y3…,

 $x=(t+z-a_1)/n$

 $v1 = (z-a_2)/n$

 $v2=(z-a_3)/n$

......其餘解答類推。

可根據解答進行最短路徑收斂

七、外接長方形長與寬:

- (-)根據結論六-(-)可得,當t是n倍數, $(t,0,0,\cdots)$ 到 $(0,0,\cdots,t)$ 聯立方程式如下
- 1. 0=t-(n-1)*x+(n-2)*v
- 2. 0=x-(n-1)*y+(n-3)y=x-2y
- 3. t=x+(n-2)*v

根據上述算式可解出 x, y:

x=2t/n, y=t/n

- (x表示 f1 次數, y表示 f2, f3…次數)
- (二)外接長方形:在 $(t,0,0,\cdots)$,n 種變色龍的情況下
- 1. 在電腦演算中:
- (1)當 t=nk 時,長與寬:長= $\frac{n-1}{n}t$,寬= $\frac{2*(n-1)}{n}t$,外接長方形的右下角為(0,0,0…,t)
- $(2)_{X \text{ k}} = [2t/n], y_{\text{k}} = [t/n]$
- (3)當 t=nk+i, $i∈{0,1,2···(n-1)}$ 時,從(t,0,0,0...)倒堆最後結果如下
- i=0,可倒推至(0,0,0..,t)
- i=1,可倒推至(1,0,0..,t-1)
- i=2,可倒推至(2,0,0..,t-2)

………其他類堆

i=n-1,可倒推至(0,1,1,1..,t-n+2)

- 2. 在 t=nk+z, $z\in\{1,2\cdots(n-1)\}$ 時,外接長方形實際可倒推組合的右下角:
- (1)當 z=1 時,以(n-2, n-3, n-3···, t-(n-2)²)結束
- (2)當 $z \in \{2, 3, 4 \cdots (n-1)\}$ 時,以 $(z-2, n-2, n-2, n-2, n-2 \cdots, t-(n-2)^2 z+2)$ 結束
- (四)外接長方形的作用:透過外接長方形,讓我們在電腦運算時可以找到必須運算的範圍。 須知,有些變色組合原本是負數,但經過幾回合的運算後,會變為正數。有了外接長方形的 長與寬,讓我們知道要運算到哪一個範圍。

八、另一種列舉變色組合的方式:根據討論六與結論六-(一)我們可以知道,在 n 色變色龍問題下,可依照變色條件以排列組合的方式列出全部的變色組合,並計算變色組合數量。

九、未來研究方向

- (一)簡化 n 種變色樹的變色組合數算法?
- (二)如 n 種變色龍, m 種相撞會變其他顏色, 且 m<n-1 則會是什麼情況

捌、参考資料及其他

- 一、游森棚。2019-58-01 科學研習月刊。森棚教官的數學題-變色龍
- 二、許志農。動手玩數學第14期。破解秘笈
- 三、沈英琪…等四人。全國科展第四十七屆國中組 數學科。變色球遊戲的探討
- 四、簡茂祥。翰林數學天地 教學分享。階差級數

【評語】080407

本研究從探討三色變色龍的問題出發,規定任何兩種顏色的變色龍相遇時,都會變成剩下的那種變色龍顏色,並討論在給定三種變色龍各有幾個條件下,最終是否會全部變成同一種顏色,然後再推廣到四色與五色變色龍的問題,該研究主題相當有趣。本作品處理的方式需要透過窮舉法,然後應用 Excel 試算表的功能,將所有可能性都列出來進行觀察、歸納及分析,本研究將顏色的變化用向量的方式來表示,而在推理的過程中,加入了倒推的思維模式,即將某一種變色龍的顏色化為另外兩種變色龍的顏色,並同樣以向量的方式來表示,進而觀察到這主題背後的一些結構。對於部分名詞說明不夠清楚,例如文中本作品宜留意從特例所發現的規律,尚需要進一步的證明或更嚴謹的說明。

作品海報

壹丶研究動機

在科學研習月刊上,我們看到游森棚老師提出的變色龍問題。

題目描述為:「一個島上有綠色、棕色、黑色三種變色龍各 15, 25, 60 隻。 生物學家發現當兩隻不同顏色的變色龍相遇時,這兩隻會同時變成第三種 顏色。一名生物數學家研究這個現象後,斷定這100隻變色龍有機會全部 變成同一種顏色。結果還真的發生了! 請問是怎麼變的? 這個顏色是什 麼?」我們試著推算題目,找出問題的答案,發現果然最後會變成同一種 顏色。這不禁讓我們思考,為何一定會變成同一種顏色?是否有最短路徑? 如果變色龍種類變成四種或更多會怎麼樣?有多少變色組合?為了能尋求這 些問題的解答,我們開始了這一次的研究。

貳、研究目的

- 一、三種變色龍在各種數目時,分別會產生哪些情況?
- 哪些情況下最後一定會變成同一種顏色?
- 二、三種變色龍數量加總為 t 時,若要最後變為同一種顏色,<mark>總共有多少種可</mark> 能的組合?又分別會是那些組合?
- 三、各組合變為同一種顏色的最短路徑為何?有什麼樣的條件與步驟?
- 四、四種變色龍或種類數目更多時,會是什麼樣的情況?有多少變色組合?
- 五、透過外接長方形,了解電腦運算變色組合的範圍。

參、研究工具

紙、筆、電腦、excel

肆、研究方法

一、文獻探討與重要名詞介紹

(一)文獻探討:上網搜尋變色龍相關問題,將不同資料的比較整理如下:

作品名稱	作品重點
動手玩數學第 14 期破解 秘笈	假設分別有 X 對綠、棕變色龍變為黑色變色龍; y 對綠、 黑變色龍變為棕色變色龍; Z 對棕、黑變色龍變為綠色變 色龍。 根據上面假設列出聯立方程式,並以此證明是否可以變成 同一種顏色
變色球遊戲的探討 (中華民國第四十七屆中 小學科學展覽會 國中組 數學科)	 利用同餘定理找到判斷式 3a+b≥c>b,判斷是否可以變為同一種顏色。 利用判斷式找出最少操作策略。 四、五色變色方式仍為兩兩相碰形成另一顏色。 關於四色以上的分析,並未指明球色變化的規則。
我們的作品	1.在 n 種變色龍的情況下,數量相同的(n-1)種不同顏色變色龍相碰會變成另一種顏色。 2.利用倒推窮舉法列出所有的可能,依變色組合的規律畫出變色樹。 3.透過變色樹討論三色、四色、五色變色龍問題解答的異同,從中找到規律,算出變色組合數,並用相同方法延伸至 n 種變色龍問題。 4.以圖形簡化問題,並透過比較找出不同變色龍數量會產生的可能組合,最後找出全部變色龍的數量規律,並推算出最短路徑。 5.歸納統整規律,利用公式算出各色樹上變色組合數量。6.發現在計算四色樹第二層數色樹第二層變色組合數為 c 1.發現在計算四色樹第二層變色組合數為 c 1.利用發現的規律,以排列組合方式算出變色組合數量。

從文獻討中,我們發現其他人的文章著眼於可不可以收斂於同一色,所以 決定要討論不同的方向,試著列舉出三色、四色、五色變色龍問題組合, 並且透過列舉找到規律,試著算出全部組合的數量。我們也希望在討論的 過程中,可以找到比他人更簡單的收斂條件以及收斂方法。

(二) 重要名詞介紹:

我們以 f 表示(n-1)隻不同顏色變色龍相撞變另一種顏色的情況。因為我

們以倒推列舉,所以多數用到fio

(1)從題目中可以知道在三色變色龍問題下,第二、三種顏色相碰會變成 第一種顏色,我們將此種情況下**變色龍數目的改變**以 f1 命名,表示為 f1=(+2,-1,-1),並發展出 f2=(-1,+2,-1),f3=(-1,-1,+2)。

(2)定義 f⁻¹1 表示 f1 相反的情況,所以在三色變色龍問題下,

 $f^{-1}1=(-2,+1,+1)$, $f^{-1}2=(+1,-2,+1)$, $f^{-1}3=(+1,+1,-2)$ (3)在 n 種變色龍問題下, f1=(+(n-1), -1, -1, -1, -1...),

 $f2=(-1,+(n-1),-1,-1,-1,\cdots), f3=(-1,-1,+(n-1),-1,-1,\cdots)$... 其他類推。

在 n 種變色龍問題下, f⁻¹1=(-(n-1), +1, +1, +1, +1…), $f^{-1}2=(+1,-(n-1),+1,+1,+1\cdots)$, $f^{-1}3=(+1,+1,-(n-1),+1,+1\cdots)$ …其他類推。

二、三色樹的列舉與探討

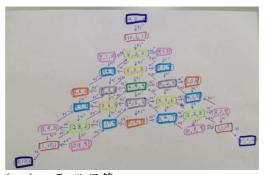
- (一)以窮舉法倒推找出所有可能
- 1. 窮舉方式: f^{-1} 運算範例,以(0, 100, 0) 倒推回(15, 25, 60) 為例

取 80 隻 樣 色,進行 40 次 $f^{-1}2$,	步驟	表達方式	代表意義
(40, 20, 40) 產生 40 隻綠色和 40 隻黑色。 線色變 40 隻, 棕色變 20 隻, 黑色變 40 隻。 線色數 40 隻, 棕色變 20 隻, 黑色變 40 隻。 線色有 40 隻, 棕色變 20 隻, 黑色有 40 隻。 銀色有 40 隻綠色, 進行 20 次 f ⁻¹ 1, 產生 20 隻綠色和 20 隻黑色。 (0, 40, 60) + 20 f ⁻¹ 2 綠色質 0 隻, 棕色變 40 隻, 黑色變 60 隻。 (0, 40, 60) + 20 f ⁻¹ 2 綠色質 0 隻, 棕色變 40 隻, 黑色有 60 隻。 (20, 0, 80) 東色有 0 隻, 棕色變 0 隻, 黑色變 80 隻。 第四步 (20, 0, 80) + 10 f ⁻¹ 1 綠色變 20 隻, 棕色變 0 隻, 黑色變 80 隻。 第四步 (20, 0, 80) + 10 f ⁻¹ 1 綠色變 20 隻, 棕色變 0 隻, 黑色變 80 隻。 第四步 (20, 0, 80) + 15 f ⁻¹ 3 綠色變 20 隻, 棕色變 0 隻, 黑色變 80 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 綠色變 0 隻, 棕色變 10 隻, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 綠色變 0 隻, 棕色數 10 隻, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 綠色數 6, 進行 10 失, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 綠色數 6, 進行 10 失, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 綠色變 10 隻, 棕色數 10 隻, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 綠色數 6, 進行 10 失, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 朱色數 6, 進行 10 失, 黑色變 90 隻。 第四步 (0, 10, 90) + 15 f ⁻¹ 3 朱色數 6, 進行 10 隻, 黑色變 10 隻, 黑色變 90 隻。 第四步 (0, 10, 90	第一步	(0 · 100 · 0)+40f ⁻¹ 2	綠色有 0 隻,棕色有 100 隻,黑色有 0 隻。
(40, 20, 40) (40, 20, 40)+20f ⁻¹ 1		=(0+40 , 100-80 , 0+40)	
第二步 (40,20,40)+20f ⁻¹ 1 =(40-40,20+20,40+20) =(0,40,60) 第三步 (0,40,60)+20f ⁻¹ 2 =(0+20,40-40,60+20) =(20,0,80) 第四步 (20,0,80)+10f ⁻¹ 1 =(20-20,0+10,80+10) =(0,10,90) 第五步 (0,10,90)+15f ⁻¹ 3 =(0+15,10+15,90-30) -(15,25,60) 第四步 (40,20)+20f ⁻¹ 2 総色有 0 隻, 株色變 0 隻, 果色變 60 隻。 級色有 0 隻, 果色變 60 隻。 級色有 0 隻, 果色變 80 隻。 級色變 20 隻, 株色變 0 隻, 黑色變 80 隻。 取 20 隻綠色,進行 10 次 f ⁻¹ 1, 產生 10 隻綠色和 10 隻黑色。 綠色變 0 隻, 裸色變 10 隻, 黑色變 90 隻。 級色變 0 隻, 裸色變 10 隻, 黑色變 90 隻。 級色數 0 隻, 裸色變 10 隻, 黑色變 90 隻。 級色數 10 隻, 黑色數 90 隻。 級色數 10 隻, 黑色數 90 隻。 聚 20 隻綠色和 10 隻黑色。 級色數 10 隻, 黑色數 90 隻。 聚 20 隻綠色和 10 隻黑色。 級色數 10 隻, 黑色數 90 隻。 聚 20 隻綠色和 10 隻黑色。 聚 20 隻,樣色數 10 隻,黑色數 90 隻。 聚 20 隻綠色和 10 隻黑色, 黑色數 90 隻。 聚 20 隻綠色和 10 隻黑色。 聚 20 隻綠色和 10 隻黑色。		The state of the s	
(40-40 , 20+20 , 40+20)			
(40-40 , 60) 產生 20 隻標色和 20 隻黑色。 (6) (6) (7) (8) (8) (9) (10) (10)	第二步	$(40, 20, 40) + 20f^{-1}1$	
# (0 , 40 , 60) # (20		=(40-40, 20+20, 40+20)	
藤色愛 0 隻、株色愛 400 隻。 緑色有 0 隻、株色有 400 隻。黒色愛 60 隻。 緑色有 0 隻、株色有 400 隻。黒色有 60 隻。 駅 40 隻株色,進行 20 次 f ⁻¹ 2, 産生 20 隻緑色和 20 隻黒色。 緑色變 20 隻、株色變 0 隻、黒色變 80 隻。 緑色變 20 隻、株色變 0 隻、黒色變 80 隻。 緑色變 20 隻、株色變 0 隻、黒色變 80 隻。 駅 20 隻綠色,進行 10 次 f ⁻¹ 1, 産生 10 隻棕色和 10 隻黒色。 緑色變 0 隻、株色變 10 隻、黒色變 90 隻。 駅 20 隻綠色,進行 10 次 f ⁻¹ 1, 産生 10 隻棕色和 10 隻黒色。 緑色變 0 隻、株色變 10 隻、黒色變 90 隻。 駅 20 隻綠色,進行 15 次 f ⁻¹ 3, 産生 15 隻綠色和 15 隻綠色。		=(0,40,60)	
取 40 隻棕色,進行 20 失 f^{-1} 2,產生 20 隻綠色和 20	** - · · ·	of any control of the second o	
(20,0,80)	第三步	(0, 40, 60)+20f ⁻¹ 2	
(20,0,80) 線色變 20 隻, 棕色變 0 隻, 黑色變 80 隻。 (20,0,80)+10f ⁻¹ 1 線色變 20 隻, 棕色變 0 隻, 黑色變 80 隻。 (20-20,0+10,80+10) 取 20 隻綠色,進行 10 次 f ⁻¹ 1,產生 10 隻棕色和 10 隻區色。 (0,10,90) 綠色變 0 隻, 棕色變 10 隻, 黑色變 90 隻。 (0,10,90)+15f ⁻¹ 3 綠色瘦 10 隻, 棕色變 10 隻, 黑色有 90 隻。 (0+15,10+15,90-30) 取 30 隻黑色,進行 15 次 f ⁻¹ 3,至生 15 隻綠色和 15 隻綠色。		=(0+20 , 40-40 , 60+20)	
取 20 隻綠色,進行 10 次 f ⁻¹ 1, 產生 10 隻綠色和 10 隻黑色。 綠色變 0 隻,棕色變 10 隻,黑色變 90 隻。 第 五步 (0,10,90)+15f ⁻¹ 3		=(20 , 0 , 80)	5.5 Control 100 Co
=(20-20 , 0+10 , 80+10)	第四步	(20 , 0 , 80)+10f ⁻¹ 1	綠色變 20 隻,棕色變 0 隻,黑色變 80 隻。
=(0,10,90) 産生 10 隻標色和 10 隻黒色。 緑色變 0 隻, 裸色變 10 隻, 黒色變 90 隻。 (0,10,90)+15f ⁻¹ 3 緑色質 0 隻, 裸色有 10 隻, 黒色有 90 隻。 駅 30 隻黒色, 進行 15 次 f ⁻¹ 3 東 30 隻黒色, 進行 15 次 f ⁻¹ 3 東 30 隻黒色, 15 隻線色和 15 隻線色の 上行 15 次 f ⁻¹ 3 産生 15 隻線色和 15 隻線色。		300 March 13 March 15	取 20 隻綠色,進行 10 次 f ⁻¹ 1,
第五步 (0,10,90)+15f ⁻¹ 3			產生 10 隻棕色和 10 隻黑色。
取 30 隻黑色,進行 15 次 f ⁻¹ 3, =(0+15,10+15,90-30) 取 30 隻黑色,進行 15 次 f ⁻¹ 3, 產生 15 隻綠色和 15 隻棕色。		-(0 / 10 / 90)	
-(0+13, 10+13, 90-30) -(15, 25, 60) 產生 15 隻綠色和 15 隻棕色。	第五步	$(0, 10, 90)+15f^{-1}3$	
-(15, 95, 60)		=(0+15, 10+15, 90-30)	
綠色變 15 隻, 棕色變 25 隻, 黑色變 60 隻。			
		-(10 - 20 - 00)	綠色變 15 隻,棕色變 25 隻,黑色變 60 隻。

2. t=3~10 的窮舉:

我們以上面定義方式倒推出(3,0,0)~(10,0,0)所有可能,列表如下

(t, 0, 0)	倒推所得全部組合	組合數
(3, 0, 0)	(1, 1, 1)	1
(4, 0, 0)	(2, 1, 1)(1, 3, 0)(0, 2, 2)(1, 0, 3)	4
(5, 0, 0)	(3, 1, 1)(2, 3, 0)(1, 2, 2)(2, 0, 3)(0, 4, 1)(0, 1, 4)	6
(6, 0, 0)	(4, 1, 1)(3, 3, 0)(2, 2, 2)(3, 0, 3)(1, 4, 1)(0, 3, 3)(1, 1, 4)	7
(7, 0, 0)	(5, 1, 1)(4, 3, 0)(3, 2, 2)(4, 0, 3)(2, 4, 1)(1, 3, 3)(2, 1, 4) (1, 6, 0)(0, 5, 2)(0, 2, 5)(1, 0, 6)	11
(8, 0, 0)	(6, 1, 1)(5, 3, 0)(4, 2, 2)(5, 0, 3)(3, 4, 1)(2, 3, 3)(3, 1, 4) (2, 6, 0)(1, 5, 2)(0, 4, 4)(1, 2, 5)(2, 0, 6,)(0, 7, 1)(0, 1, 7)	14
(9, 0, 0)	(7,1,1)(6,3,0)(5,2,2)(6,0,3)(4,4,1)(3,3,3)(4,1,4) (3,6,0)(2,5,2)(1,4,4)(2,2,5)(3,0,6)(1,7,1)(0,6,3) (0,3,6)(1,1,7)	16
(10, 0, 0)	(8,1,1)(7,3,0)(6,2,2)(7,0,3)(5,4,1)(4,3,3)(5,1,4) (4,6,0)(3,5,2)(2,4,4)(3,2,5)(4,0,6)(2,7,1)(1,6,3) (0,5,5)(1,3,6)(2,1,7)(1,9,0)(0,8,2)(0,2,8)(1,0,9)	21


(二) 將變色組合繪製為變色樹:

1. 方向與符號:如從(t,0,0)出發,我們將變色樹方向與符號定義如下 變色樹的右邊方向與符號定義

符號名稱 數字變化 方向 符號名稱 數字變化 方向 -1, -1)(+2,(-2, +1, +1)f 1 (-1, +2, -1)(+1, -2, +1) \rightarrow f3 (-1, -1, +2)(+1, +1, -2)變色樹的左邊方向與符號定義 符號名稱 數字變化 數字變化 方向 方向 $\overline{(-2,+1,+1)}$ f 1 f 1 f2+2, -1) $f2^{-1}$ (+1, -2, +1)

2. 繪製出變色樹,以(12,0,0)為例

+2)

我們將倒推發現的變色組合 根據上面的符號方向繪製出 關係圖。

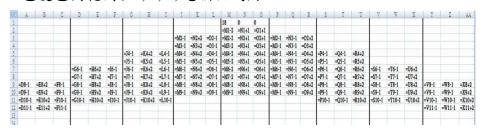
因為看起來就像聖誕樹,所 以我們將變色組合的關係圖 稱為變色樹

(三)以電腦運算

 以 excel 製作變色樹:根據變色樹的原理,我們利用 excel,幫助我們 可以更快的算出所有變色組合,方法如下:

(1)以(t,0,0)為最上面中心,每 3 欄為 1 組合。 (2)變色樹中心的組合: $f1^{-1}$ ->(-2,+1,+1)。範例如下:

(3)從變色樹中心向右發展:f2⁻¹->(+1,-2,+1)。範例如下:

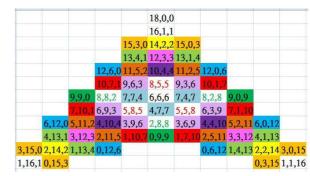

M	N	0
t	0	0
=M1-2	=N1+1	=01+1
=M2-2	=N2+1	=02+1
=M3-2	=N3+1	=03+1
=M4-2	=N4+1	=04+1
=M5-2	=N5+1	=05+1

-1/11 L	-11111	-0111			
=M2-2	=N2+1	=02+1	=M2-1	=N2-1	=02+2
=M3-2	=N3+1	=03+1	=M3-1	=N3-1	=03+2

f1⁻¹: (-2, +1, +1)

f2⁻¹: (+1, -2, +1)

2. 三色變色樹範例(18, 0, 0)電腦公式圖


三、三色樹的比較與分析

(一)總數 t 與全部變色組合的對應關係:因 f[¬]可交換的特性,根據列舉 結果完成下表。

起點	終點	過程	步數	組合數
(3, 0, 0)	(3, 0, 0)	f1 ⁻¹ f3	2	3
(4, 0, 0)	(1, 0, 3)	f1 ⁻¹ f1 ⁻¹ f2 ⁻¹	3	4
(5, 0, 0)	(0, 1, 4)	f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f2 ⁻¹	4	5
(6, 0, 0)	(0, 0, 6)	f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f2 ⁻¹ f3	5	7
(7, 0, 0)	(1, 0, 6)	f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f2 ⁻¹ f2 ⁻¹ f2 ⁻¹	6	8
(8, 0, 0)	(0, 1, 7)	f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f2 ⁻¹ f2 ⁻¹	7	10
(9, 0, 0)	(0, 0, 9)	f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f1 ⁻¹ f2 ⁻¹ f2 ⁻¹ f3	8	12

(二)三色變色樹觀察:

1. $\Delta(t, 0, 0)$ 中,當 t=3k 時,可從(t, 0, 0)到(0, 0, t),以(18, 0, 0)為例。

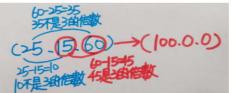
2. 在 t=3k 時,如將所有組合表示為(a1,a2,a3),則可在組合中找到(a1,a2,a3)所

在 t=3k+1 或 3k+2 時,可在組合中找到(a1,a2,a3)與(a1,a3,a2)。 若是以(0,t,0)倒推,可找到(a2,a1,a3)與(a3,a1,a2),以(0,0,t) 倒推,可找到(a2,a3,a1)與(a3,a2,a1)。

3. 以(a1, a2, a3)表示從(t, 0, 0)到(0, 0, t)的三色樹。根據觀察,每一行 的頂端數字 al 會比前一行數字 al 少 3

t	0	0							
t-2	1	1							
t-4	2	2	t-3	0	3				
t-6	3	3	t-5	1	4				
t-8	4	4	t-7	2	5	t-6	0	6	

發現:每向右一行 ai 就少3。 所以 y 表多=[a1/3]

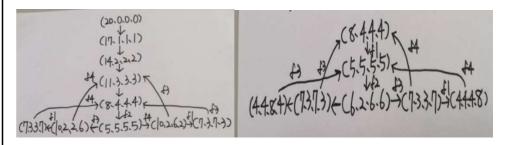

4. 三色數變色組合通式:利用倒推法觀察變色模式

令 f(t, x, y)=f(總和 t, 向下數第 x 層, 右邊第 y 個)=(a1, a2, a3)

(1)根據變色樹模型可得知, x #x=2t/3, x=a2+2*a3/3, y=a3-a2/3。

(2)反過來說(a1, a2, a3) = (t-2x+y, x-2y, x+y)

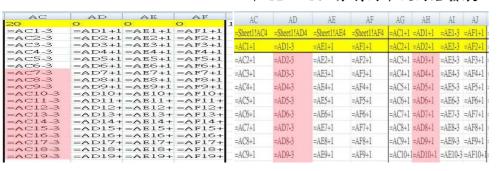
(三)最短路徑:在列舉三色樹的變色組合後,透過規律可發現以下幾點: 1. 判斷屬於何種三色樹:根據觀察,當變色組合為(a1, a2, a3)時, a1, a2, a3 任選 2 數相減,則其中必有一結果為 3 的倍數。如 a2-a3 為 3 的倍數,則最後會變成 al 的顏色。如下圖:

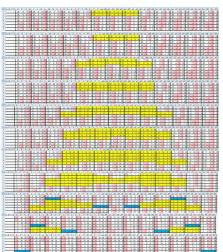

從左圖可以發現:除收斂數字 外,任2數相減為3的倍數。 |我們猜測此特性會出現在其他色 |樹中。

2. 判斷在哪一邊 :據三色樹的形狀,可以知道只要不構成迴圈可構成最 短路徑,也就是收斂於(t,0,0)時僅需要 f1,f2 或 f1,f3 其中一個組合。 根據上面的觀察可知 x=a2+2*a3/3, y=a3-a2/3。 以(25, 15, 60)為例,可得 x=45,y=15

3. (25, 15, 60)變色結果:根據上面計算 x, y 的結果進行變色 (25, 15, 60)+f2*15=(25-15, 15+2*15, 60-15)=(10, 45, 45)(10, 45, 45)+f1*45=(10+2*45, 45-45, 45-45)=(100, 0, 0)

四、四色樹

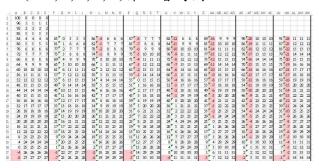

(一). 飛碟模式:根據三色樹的結構,我們添加了f3⁻¹,成為了四色樹。 因為形狀像飛碟所以我們稱為飛碟模式


(二)電腦演算模式

1. 取 f1⁻¹在第一層結構向下發展

2. 以第一層結構的變色組合,第二層 取 f2-1, f3-1分别向下及向右發展。

3. 從 $(28,0,0,0) \rightarrow (19,3,3,3) \rightarrow (1,1,1,25)$ 為例



左圖為(28,0,0,0)→(1,1,1,25)四 色數的第二層的範例。

我們將 11 頁的工作表裁切後排列在 一起,形成四色樹的圖形。紅色表 示負數,也就是無法成為變色組合。 黄色的部分是可成為變色組合。 從圖形中可以看到對稱與規律。 最讓人要訝異的是,雖然一頁一頁 的工作表看起來是正方形,但沒想 到排在一起,依然是變色樹的形狀。

五、五色樹

(一)取三色樹結構作為第一層,分別以 f1⁻¹,f2⁻¹ 向下以及向右發展 以(100, 0, 0, 0, 0)第一層為例

因為變色樹對稱特性。 接下來我們進行探討與 實驗只倒推變色樹的一 邊。讓資料更整齊易 懂。

(二)取四色樹第二層結構作五色樹第二層,分別以 f3⁻¹,f4⁻¹向下以及向右發展 1. 根據工作表 1 變色組合進行驗算

		-	A1			87	6		f*	=工作表1!A5						
4	Α	В	C	D	Е	F	G	Н	I	J	K	L	M	N	0	
1	4	4	4	4	4	5	5	5	0	5	6	6	6	4	6	
2	5	5	0	5	5	6	6	1	1	6	7	7	2	-3	7	
3	6	6	-4	6	6	7	7	-3	2	7	8	8	-2	-2	8	
4	7	7	-8	7	7	8	8	-7	3	8	9	9	-6	-1	9	

2. 根據我們製作的電腦演算工具,成功從(20,0,0,0)倒推到(0,0,0,0,20)。 但從圖片中可看出明顯(0,0,0,0,20)無法單獨用 $f3^{-1}$ 與 $f4^{-1}$ 倒推,必須 2者結合,或者是透過 f5⁻¹才可以成功。

U5		*	1	\times	4	£	ê	=U4+1	L.																
al	Α	В	C	D	Е	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	×	Y
1	-8	-8	12	12	12	-7	-7	13	8	13	-6	-6	14	4	14	-5	-5	15	0	15	4	-4	16	4	16
2	-7	-7	8	13	13	-6	-6	9	9	14	-5	-5	10	5	15	-4	4	11	1	16	-3	-3	12	-3	17
3	-6	-6	4	14	14	-5	-5	5	10	15	-4	4	6	6	16	-3	-3	7	2	17	-2	-2	8	-2	18
4	-5	-5	0	15	15	-4	-4	1	11	16	-3	-3	2	7	17	-2	-2	3	3	18	-1	-1	4	-1	19
5	-4	-4	-4	16	16	-3	-3	-3	12	17	-2	-2	-2	8	18	-1	-1	-1	4	19	0	0	0	0	20
6	-3	-3	-8	17	17	-2	-2	-7	13	18	-1	-1	-6	9	19	0	0	-5	5	20	1	1	-4	1	21

六、外接長方形長與寬實驗:

從(36, 0, 0, 0, 0, 0)到(0, 0, 0, 0, 36), a1, a2, a3, a4 改變值統計表

		· · · · · · · · · · · · · · · · · · ·
變色組合	a1, a2, a3, a4, a5 改變值	累計
(36, 0, 0, 0, 0, 0)	a::0, a::0, a::0	a: 0, a: 0, a: 0, a: 0, a: 0
(1, 7, 7, 7, 7, 7)	a::-35	a ₁ :-35, a ₂ :0, a ₃ :0, a ₄ :0, a ₅ :0
(2, 2, 8, 8, 8, 8)	a ₂ :-5	$a_1:-35, a_2:-5, a_3:0, a_4:0, a_5:0$
(3, 3, 3, 9, 9, 9)	as:-5	$a_1:-35, a_2:-5, a_3:-5, a_4:0, a_5:0$
(4, 4, 4, 4, 10, 10)	a ₄ :-5	$a_1:-35, a_2:-5, a_3:-5, a_4:-5, a_5:0$
(5, 5, 5, 5, 5, 11)	as:-5	$a_1:-35, a_2:-5, a_3:-5, a_4:-5, a_5:-5$
(6, 0, 6, 6, 6, 12)	a ₂ :-5	$a_1:-35, a_2:-10, a_3:-5, a_4:-5, a_5:-5$
(7, 1, 1, 7, 7, 13)	a:-5	$a_1:-35$, $a_2:-10$, $a_3:-10$, $a_4:-5$, $a_5:-5$
(8, 2, 2, 2, 8, 14)	a ₄ :-5	$a_1:-35, a_2:-10, a_3:-10, a_4:-10, a_5:-5$
(9, 3, 3, 3, 3, 15)	as:-5	a::-35, a2:-10, a3:-10, a4:-10, a5:-10
(4, 4, 4, 4, 4, 16)	a::-5	a::-40, a2:-10, a3:-10, a4:-10, a5:-10
(0, 0, 0, 0, 0, 36)	a1:-20, a2:-20, a3:-20, a4:-20, a5:-20	a1:-60, a2:-30, a3:-30, a4:-30, a5:-30

伍、研究結果

一、三色樹觀察結果:

當 t 是 3 的倍數時,令由上而下分別是 0~t/3 列,

X表示列數, y表示從中間向右數第幾組, S表示行下有負數的組合 當t是3的倍數時,我們可以得到以下統計表

名稱	y=0	y=1	y=2	y:
t 是偶數	$X = \frac{2t}{3}$	$x=\frac{2t}{3}-2$	$x = \frac{2t}{3} - 4$	$x = \frac{2t}{3} - 2y_i$
	$S = \frac{t}{6}$	$S = \frac{t}{6}$	$s = \frac{t}{6} - 1$	$s = \frac{t}{6} - \left[\frac{y}{2}\right]$, s>0
t 是奇數	$X = \frac{2t}{3}$	$x = \frac{2t}{2} - 2$	$x = \frac{2t}{2} - 4$	$x = \frac{t-1}{2} - 2y_i$
	$S = \frac{2t}{3} - \frac{t-1}{3}$	$s = \frac{2t}{3} - \frac{t-1}{3} - 1$	$s = \frac{2t}{2} - \frac{t-1}{2} - 1$	$s = \frac{2t}{3} - \frac{t-1}{3} - \left[\frac{y+1}{3}\right]$, s>0

二、四色樹觀察

(一)觀察結果:四色樹第二層為正方形,只要將該正方形負組合數都減掉, 即可算出正組合數。

(二)以(-5.11.11.11)的第二層變色組合數為例:

(—	-) 以(- 0 ,	11,11,11)的另一僧愛巴組合數為例。
開	始	正方形左上角變色組合:(-5,11,11,11)
結	束	正方形右下角變色組合:(5,1,1,21)
Æ	方形邊長	6
組	L合數	36
負	組合數	共 36 個組合, a2>0 組合數= [11/3]+1+ [12/3]+1+ [13/3]+1+ [14/3]+1+ [15/3]+1+ [16/3]+1 =4+5+5+5+6+6=31 個 36-31=5, 5*2=10 (ax<0 或 ax<0 的組合數共 10 個) (5+1)/2*5=15 (共 15 個 ax<0 的負數組合) 5-[11/3]+1=1, 1*2=2 (有 2 個重複負組合數) 10+15-2=23 (此正方形中共有 23 個負組合數)

三、五色樹觀察結果

(一)第一層結構和三色樹結構類似,從下面圖形比較發現相同與不同之處

1. 第一層電腦運算結果

三色樹(18,0,0) 第一層

18	0	0	0	0										
14	1	1	1	1										
10	2	2	2	2										
6	3	3	3	3										
2	4	4	4	4	3"	0	5	-5	5	4	4	6	6	6
-2	5	5	5	5	-1	1	6	6	6	0"	-3	7	7	7
-6	6	6	6	6	-5	2	7	7	7	4"	-2	8	8	8
-10	7	7	7	7	-9"	3	8	8	8	-8"	-1	9	9	g

五色樹(18,0,0,0,0)第一層

(二)第二層電腦運算結果

60	10	10	10	10	61	11	11	6	11	62	12	12	2	12	63	13	13	-2	13
61	11	6	11	11	62	12	7	7	12	63	13	8	3	13	64	14	9		
62	12	2	12	12	63	13	3	8	13	64	14	4	4	14	65	15	5	0	15
63	13	-2	13	13	64	14	-1	9	14	65	15	0	5	15	66	16	1	1	16

四、收斂於同色的最短路徑,以(19,3,23,18,38)為例:

(一)19-3=16,23-3=20,18-3=15,…根據計算可知收斂於數字 19 的位置。

(二)38 為 19 外最大數字,因此可知不進行 f5。 (三)令從(19, 3, 23, 18, 38)到(101, 0, 0, 0, 0)分別要進行 a1 個 f1, a2 個 f2, a3 個 f3…依此類推。且從五色樹電腦運算中可知進入第二層時會是 (19+4a1-a2, 3-a1+4a2. k, k, k)的模式。

可得到下面聯立方程式:

a. 可符到下面即	卵 五 力 程 式
(1)k-4c+d=23	(1)c=3
(2)k-4d+c=18	(2)d=4
(3)k+c+d=38	(3)k=31

b. 了解第二層開頭時,可推出 3 聯立方程式

4 (4) NO - OH MATERIAL	4 11 14 0 1/1
(1)3a+3b=3*31	(1)a+b=31
(2)101-4a+b+7=19	(2)a=24
(3)a-4b+7=3	(3)b=7

(四)根據獲得 a1, a2, a3…可完成(19, 3, 23, 18, 38)到(101, 0, 0, 0, 0)最短步驟

	變色組合							
19	3	23	18	38	+7f2			
12	31	16	11	31	+4f4			
8	27	12	27	27	+3f3			
5	24	24	24	24	+24f1			
101	0	0	0	0	完成			

五、外接長方形與變色組合數計算 (一)外接長方形長、寬統計表:

根據實驗六,我們製作了以下表格。

起點	中轉	終點	長	寬	h
(18, 0, 0)	(-6, 12, 12)	(0, 0, 18)	12	24	6
(20, 0, 0, 0)	(-10, 10, 10, 10)	(0, 0, 0, 20)	15	30	10
(25, 0, 0, 0, 0)	(-15, 10, 10, 10, 10)	(0, 0, 0, 0, 25)	20	40	15
(36, 0, 0, 0, 0, 0)	(-24, 10, 10, 10, 10, 10)	(0, 0, 0, 0, 0, 36)	30	60	24

(二)我們將外接長方形的寬以 p 代表,組合中數字加總以 t 代表。根據上

表,可列出2	個多項式,進行間付	上得到關係式	
不同變色樹	h, p 關係式	p, t 關係式	簡化結果
三色變色樹	$h=\frac{1}{4}p$	$t+\frac{1}{4}p=p$	$p = \frac{4}{3}t \cdot h = \frac{1}{4}p$
四色變色樹	$h=\frac{2}{6}p$	$t + \frac{2}{6}p = p$	$p = \frac{6}{4}t \cdot h = \frac{2}{6}p$
五色變色樹	$h=\frac{3}{8}p$	$t + \frac{3}{8}p = p$	$p = \frac{8}{5}t \cdot h = \frac{3}{8}p$
六色變色樹	$h = \frac{4}{10}p$	$t+\frac{2}{5}p=p$	$p = \frac{10}{6}t \cdot h = \frac{2}{5}p$
n 色變色樹	$h = \frac{n-2}{2*(n-1)}p$	$t + \frac{n-2}{2*(n-1)} p = p$	$p = \frac{2*(n-1)}{n}t$, $h = \frac{n-2}{n}t$

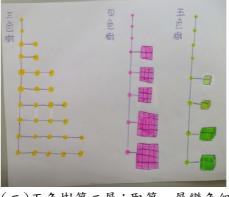
陸、討論

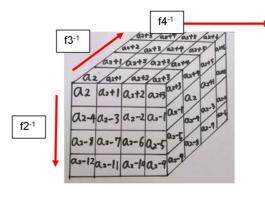
一、我們發現四色樹第二層 a2>0 且 a3>0 的組合數有特殊的規律, 而這個規律似 乎與平方數相關,所以將第二層中的 a2, a3 單獨拉出,列成工作表,並將其中不 同的正方形著色,如下圖:以左上角 a2=14, a3=14 的工作表為例

20074	-		NIA TO	DO 100 100			2007400	N			NILL THE PERSON	-010-0	NAME OF TAXABLE PARTY.	177 - 12	A 20
14	14	15	11	16	8	17	5	18	2	19	-1	20	4	21	-7
11	15	12	12	13	9	14	6	15	3	16	0	17	-3	18	-6
8	16	9	13	10	10	11	7	12	4	13	1	14	-2	15	-5
5	17	6	14	7	11	8	8	9	5	10	2	11	-1	12	4
2	18	3	15	4	12	5	9	б	6	7	3	8	0	9	-3
-1	19	0	16	1	13	2	10	3	7	4	4	5	1	6	-2
-4	20	-3	17	-2	14	-1	11	0	8	1	5	2	2	3	-1
-7	21	-6	18	-5	15	4	12	-3	9	-2	6	-1	3	0	0

發現四色樹中第二層 a2>0 且 a3>0 的組合數規律,並製作下表。

第二層開頭時 a2=?	3	4	5	6	7	8	9
組合數	4	5	7	10	12	15	19
以平方數加減表示	2 ²	2°+1°	$2^{2}+2^{2}-1^{2}$	3°+1°	$3^2+2^2-1^2$	$3^2+3^2-2^2+1^2$	$4^2+2^2-1^2$
At - P OF AT AT A A A		1 1		10	1.0	0	1.4


26 31 40 組合數 以平方數加減表示


我們發現四色樹第二層 a2>0 且 a3>0 的組合數為平方數相加減

二、五色樹運算變化

(一)從三色樹、四色樹觀察可知五色樹第二層結構可以是立方體

第二層與 a2 改變的情況:如下圖所示

(二)五色樹第二層:取第一層變色組合(a1, a2, a3, a4, a5)進行 f2⁻¹, f3⁻¹, f4⁻¹發展立 方體結構

1. 第二層為邊長[a2/2]+1 個變色組合的立方體,該立方體包含([a2/2]+1)³個變色組合。 2. 第一行正組合數= $[a_2/2]+1$,第一行行下負數組合數= $[a_2/2]-[a_2/4]$

計算 $a_2 < 0$ 或 $a_3 < 0$ 或 $a_4 < 0$ 的負數組合數時,與四色樹不同,須注意 $a_2 < 0$ 且 $a_3 < 0$ 之類的情況。

3. ai<0 的變色組合數:

(1)左上角 a₁<0 且|a1|≤[a₂/2]+1,該立方體 a₁<0 的變色組合數=

 $\big[(|a1|+1)*|a1| \big] / 2 + \big[(|a1+1|+1)*|a1+1| \big] / 2 + \big[(|a1+2|+1)*|a1+2| \big] / 2 + \cdots \big[(|-1|+1)*|-1| \big] / 2 + \big[(|a1+1|+1)*|a1+2| \big] / 2 + \cdots \big[(|a1+1|+1|+1)*|a1+2| \big] / 2 + \cdots \big[(|a1+1|+1|+1)*|a1+2| \big] / 2 + \cdots \big[(|a1+1|+1|+1)*|a1+2| \big] / 2 + \cdots$ (2)若 |a1|>[a2/2]+1 則該行負組合數以[a2/2]計算

三、從變色龍變色組合條件出發的另一種計算變色組合數量方式

(一)變色組合條件的反思:

若列出(a1, a2, a3)三數且 a1+a2+a3=t,是否滿足 a2-a3 是 3 的倍數此一條件,就可 最後收斂於(t,0,0)呢?

(二) 三色樹(18,0,0)與四色樹(20,0,0,0,0)實驗

as-as=?	a₁-a₂=₃	as-az=6	as-az=9	as-as=12	a ₃ -a ₂ =15	a ₃ -a ₂ =0	4的倍數	a ₃ -a ₂ =0,	a ₃ -a ₂ =0,
根據條	(a1 ,a2 ,a3)	(a1 ,a2 ,a3)	(a1 ,a2 ,a3)	(a1 ,a2 ,a3)	(a1 ,a2 ,a3)	(a1 ,a2 ,a3)		a ₄ -a ₃ =0	a4-a3=4
件列出 的組合	(15 ,0 ,3)	(12 ,0 ,6)	(9 ,0 ,9) (7 ,1 ,10)	(6 ,0 ,12) (4 ,1 ,13)	(3 ,0 ,15)	(18 ,0 ,0) (16 ,1 ,1)	根據條件	(20 ,0 ,0 ,0)	(16 ,0
	(11 ,2 ,5)	(8 ,2 ,8)	(5 ,2 ,11)	(2, 2, 14)	(1 ,1 ,10)	(14 ,2 ,2)	列出的组	(17 ,1 ,1 ,1)	(13 ,1 ,
	(9 ,3 ,6)	(6 ,3 ,9) (4 ,4 ,10)	(3 ,3 ,12)	(0 ,3 ,15)		(12 ,3 ,3)	合	(14 ,2 ,2 ,2)	(10 ,2 ,
	(7 ,4 ,7)	(2 ,5 ,11)	(1 ,4 ,13)			(8 ,5 ,5)		(11 ,3 ,3 ,3)	(7 ,3 ,
	(3 ,6 ,9)	(0 ,6 ,12)				(6, 6, 6)		(8 ,4 ,4 ,4)	(4 ,4 ,
	(1 ,7 ,10)					(4 ,7 ,7)		(5, 5, 5, 5)	(1 ,5 ,
								0 6 6 6	

4的恰數	a3-a2-0,	a ₃ -a ₂ -0,	a3-a2-0,	as-az-0,	a3-a2-0,
	a ₄ -a ₃ =0	a ₄ -a ₃ =4	a ₄ -a ₃ =8	a ₄ -a ₃ =12	a ₄ -a ₃ =16
根據條件	(20 ,0 ,0 ,0)	(16, 0, 0, 4)	(12 ,0 ,0 ,8)	(8 ,0 ,0 ,12)	(4 ,0 ,0 ,16)
列出的组	(17, 1, 1, 1)	(13 ,1 ,1 ,5)	(9 ,1 ,1 ,9)	(5 ,1 ,1 ,13)	(1 ,1 ,1 ,17)
合	(14 ,2 ,2 ,2)	(10 ,2 ,2 ,6)	(6 ,2 ,2 ,10)	(2, 2, 2, 14)	
	(11 ,3 ,3 ,3)	(7, 3, 3, 7)	(3 ,3 ,3 ,11)		
	(8 ,4 ,4 ,4)	(4 ,4 ,4 ,8)	(0 ,4 ,4 ,12)		
	(5, 5, 5, 5)	(1 ,5 ,5 ,9)	(4, 8, 8, 0)		
	(2, 6, 6, 6)				

(三) 驗證:我們將上面的數字組合與變色組合一個一個驗證互相比對,發現根 據變色條件列出的數字組合,在經過順序排列後,就是全部的變色組合。

柒、結論

一、根據實驗結果的模型,可知(t,0,0,0,…)以f1⁻¹,f2⁻¹,f3⁻¹,f4⁻¹…順序倒推,如果 出現(a1, a2, a3, a4…),則可改變 fn 順序獲得相同數字,不同排列的變色組合。因此想 要列舉全部變色組合,可用 $f1^{-1}$, $f2^{-1}$, $f3^{-1}$, $f4^{-1}$ ···, $f(n-1)^{-1}$ 倒推出全部變色組合,剩 下組合依倒推順序改變進行列舉。

二、三色樹全部組合數目

(一)直算法

全部組合數目= $\sum_{i=0}^{[t/3]} (t-3*i)/2+1$

(二)横算法

1.a2>0 的組合數目= $\sum_{i=0}^{[2t/3]} i/2+1$

2. 令 a1<0 的全部組合數目為 m,則全部組合數目= $\sum_{i=0}^{\{2t/3\}} i/2+1-m$

(三) 排列組合算法

(四)三色樹變色組合通式:令 x 表示由上而下第幾列, y 表示從中向外數第幾個變色組 合。以 f(t, x, y)=f(總和 t, 第 x 層, 第 y 個)=(a₁, a₂, a₃),表達所有三色樹中變色組合。 我們可以列出下面3個關係表:

1. 最後收斂於(t, 0, 0)時:

方向	aı	a ₂	a₃	X	У
變色樹右邊	t-2x+y	x-2y	x+y	a ₂ +2*a ₃ /3	a ₃ -a ₂ /3
變色樹左邊	t-2x+y	x+y	x-2y	2*a ₂ +a ₃ /3	a ₂ -a ₃ /3
	()				

2 最後收斂於(0, t, 0)時:

2. x 12 12 x x x (0, t, 0) 11						
方向	aı	a ₂	a₃	X	У	
變色樹右邊	x-2y	t-2x+y	x+y	2*a ₃ +a ₁ /3	a ₃ -a ₁ /3	
變色樹左邊	x+y	t-2x+y	x-2y	2*a ₁ +a ₃ /3	a ₁ -a ₃ /3	

3. 最後收斂於(0, 0, t)時:

方向	aı	a ₂	a₃	X	у
變色樹右邊	x-2y	x+y	t-2x+y	2*a ₂ +a ₁ /3	$a_2-a_1/3$
變色樹左邊	x+y	x-2y	t-2x+y	a ₂ +2*a ₁ /3	a ₁ -a ₂ /3

從上表可以得知,若收斂於 a1,則 a2-a3會是 3的倍數,其他狀況類推。

三、四色樹變色組合數:若以 f1⁻¹f2⁻¹f3⁻¹倒推可得以下變色組合

(-)第一層:以(t,0,0,0)進行 $f1^{-1}$,可得 [2t/4]+1 組變色組合 (a_1,a_2,a_3,a_4)

完成第一層後,抓取每一個變色組合到第二層進行

(二)第二層第一種情況:全部無負數

令左上角變色組合為(a1, a2, a3, a4), 正方形邊長組合數=[a2/2]+1, 全部組合數([a2/2]+1)² (三)第二層第二種情況:僅行下有負數

負數組合數= ${\sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i)/3]}*2$

此情況下根據電腦運算發現的規律也可以根據下表計算組合數量

a2=?	四色樹中第二層 a2>0 且 as>0 的組合數量
3k	$(k+1)^2 + (k-1)^2 - (k-2)^2 + \cdots 1^2$, $k=1$ 時例外
3k+1	$(k+1)^2+k^2-(k-1)^2+(k-2)^2-\cdots 1^2$
3k+2	$(k+1)^2 + (k+1)^2 - k^2 + (k-1)^2 - (k-2)^2 + \dots + 1^2$

第二種情況全部組合數= $([a_2/2]+1)^2-(a_2<0$ 的組合數)*2

(四)第二層第三種情況:

1. 行下有負數, $a_i < 0$ 且 $|a_1| \le [a_2/2] + 1$ 時,共有負數組合數= $\sum_{i=0}^{|a_1|} i$

2. 行下有負數, $a_1<0$ 且 $|a_1|>[a_2/2]+1$ 時,令 $g=|a_1|-[\frac{a_2}{2}]-1$

負數組合數=($[a_2/2]+1$)*g+ $\sum_{i=g+1}^{[a_2/2]+1} i$

由 $1 \cdot 2$ 可知:第三種情況全部組合數= $([a_2/2]+1)^2-(a_2<0$ 的組合數) $*2-a_1<0$ 的組合數

(五)第二層第四種情況:行下有負數,ai為負數,且2種組合有重複

1. a₁<0 且|a1|≤[a₂/2]+1 時

重複負數組合數=[$\sum_{i=0}^{\left[\frac{a2}{2}\right]}$ |a1+i|- $\left[\frac{a2+i}{3}\right]$ -1]*2, |a1+i|- $\left[\frac{a2+i}{3}\right]$ -1>0

2. a1<0 且|a1|>[a2/2]+1 時,令 g=|a1| $-\left[\frac{a2}{2}\right]-1$

重複負數組合數=

$$\big[\,(\textstyle\sum_{i=0}^g(\left[\frac{a2}{2}\right]-\left[\frac{a2+i}{3}\right])+\textstyle\sum_{i=g+1}^{\left[\frac{a2}{2}\right]}|a1+i|-\left[\frac{a2+i}{3}\right]-1\,\big]*2\;,\;|a1+i|-\left[\frac{a2+i}{3}\right]-1>0$$

第四種情況全組合數= $([a_2/2]+1)^2-(a_2<0$ 的組合數) $*2-a_1<0$ 的組合數+全部重複組合數

(六) 由(一)、(二)、(三)、(四)和(五)可知:

四色變色組合數=全部組合數-負組合數+重複負數組合數

四、五色樹變色組合數:若以 f1⁻¹f2⁻¹f3⁻¹f4⁻¹ 倒推可得以下變色組合

(-)第一層:以(t,0,0,0,0)進行 $f1^{-1}$,可得 [2t/5]+1 組變色組合 (a_1,a_2,a_3,a_4)

完成第一層後,抓取每一個變色組合到第二層進行。

將每個立方體左上角變色組合表示為(a1, a2, a3, a4)可得以下公式。

(二)第二層第一種情況:全部無負數

立方體邊長組合數= $[a_2/2]+1$,全部組合數= $([a_2/2]+1)^3$

(三)第二層第二種情況:僅行下有負數

整個立方體中 a < 0 的負數組合數= $\sum_{i=0}^{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} [a2/2] - [(a2+i+j)/4]$

從對稱結構可知 $a_2 < 0$ 同類的負數組合數= $\left(\sum_{i=0}^{[a2/2]} \sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i+j)/4]\right)*3$

 $a_2 < 0$ 且 $a_3 < 0$ 的負數組合數= $\sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i)/3]$

從對稱結構可知 $a_2<0$ 且 $a_3<0$ 同類的負數組合數= $(\sum_{i=0}^{[a2/2]}[a2/2]-[(a2+i)/3])*3$

該立方體中 a2<0 或 a3<0 或 a4<0 的組合數=

$(\Sigma_{j=0}^{[a2/2]} \sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i+j)/4]) *3 - (\sum_{i=0}^{[a2/2]} [a2/2] - [(a2+i)/3]) *3$

第二種情況全部組合數= $([a_2/2]+1)^3$ - $(a_2<0)$ 的組合數)*3+ $(a_2<0)$ 且 $a_3<0$ 的組合數)*3 (四)第二層第三種情況:

1. 行下有負數, a₁為負數且|a1|≤[a2/2]+1, 根據階差公式可得:

該立方體中 $a_i < 0$ 的變色組合數= $\sum_{i=0}^{|a_i|} \sum_{j=0}^{|a_i|} i$

2. 行下有負數, a_1 為負數且 $|a_1| > [a_2/2] + 1$,令 g 代表 $|a_1| - \left[\frac{a_2}{2}\right] - 1$

負數組合數=([a2/2]+1)* $\sum_{j=0}^{g} \sum_{i=0}^{j} i + \sum_{j=g+1}^{[a2/2]+1} \sum_{i=g+1}^{j} i$

由 $1 \cdot 2$ 可知:第三種情況全部組合數= $([a_2/2]+1)^3$ - $(a_2<0$ 的組合數)* $3+(a_2<0$ 且 $a_3<0$ 的 組合數)*3 - ai<0 的組合數

(五)第二層第四種情況:

1. a2<0 與 a1<0 的重複組合數:

(1)al<0 且|a1|≤[a₂/2]+1 時,|a1+i+j| $-\left[\frac{a^{2+i+j}}{4}\right]$ - 1 < 0不列入計算結果

重複負數組合數= $\left[\sum_{i=0}^{[a2/2]} \sum_{i=0}^{[a2/2]} |a1+i+j| - \left[\frac{a2+i+j}{4}\right] - 1\right]*3$

(2)a1<0 且|a1|>[a2/2]+1 時,令|a1|-[a2/2]-1=g

重複負數組合數= $\left[\left(\sum_{j=0}^{g}\sum_{i=0}^{j}\left(\left[\frac{a^{2}}{2}\right]-\left[\frac{a^{2+i+j}}{4}\right]\right)+\sum_{j=0}^{\left\lfloor\frac{a^{2}}{2}\right\rfloor}\sum_{i=g+1}^{j}|a^{2}+i+j|-\left[\frac{a^{2+i+j}}{4}\right]-1\right]*3$

2. a2<0 且 a3<0 與 a1<0 的重複組合數

(1)a1<0 且|a1|≤[a2/2]+1 時,|a1+i| $-\left[\frac{a2+i}{3}\right]-1>0$

重複負數組合數= $\left[\sum_{i=0}^{[a2/2]} |a1+i| - \left[\frac{a2+i}{3}\right] - 1\right]$ *3

(2)al<0 且|a1|>[a2/2]+1 時,令 g=|a1| $-\left[\frac{a2}{2}\right]-1$,|a1+i| $-\left[\frac{a2+i}{3}\right]-1>0$

重複負數組合數= $\left[\left(\sum_{i=0}^{g}\left(\left[\frac{a^2}{2}\right]-\left[\frac{a^2+i}{3}\right]\right)+\sum_{i=g+1}^{\left\lfloor\frac{a^2}{2}\right\rfloor}|a^2+i|-\left[\frac{a^2+i}{3}\right]-1\right]*3$

由 1、2 可知:全部重複組合數=(a₂<0 與 a₁<0 的重複組合數)*3-(a₂<0 且 a₃<0 與 a₁<0 的 重複組合數)*3

第四種情況全部組合數=([a2/2]+1)3-(a2<0 的組合數)*3+(a2<0 且 a3<0 的組合數)*3 -

(六)由(一)、(二)、(三)、(四)和(五)可知:

ai<0 的組合數+全部重複組合數

五色樹第二層一個立方體的全部變色組合數=

立方體數量-{a2<0 或 a3<0 或 a4<0}數量-{a1<0}數量+{a2<0 或 a3<0 或 a4<0} ∩ {a1<0}數量

五、n 種變色龍,全部有 t 隻時,變色組合數量計算

(一)第一層:以(t,0,0,0,0,0···)進行 f1⁻¹,可得 [2t/n]+1 組變色組合(a1,a2,a3,a4)

完成第一層後,抓取每一個變色組合到第二層進行

(二)第二層第一種情況:全部無負數

令左上角變色組合為(a1, a2, a3, a4, a5…, n), 邊長組合數=[a2/2]+1, 全部組合數 $=([a_2/2]+1)^{n-2}$

(三)第二層第二種情況:

1. a2<0 等負數組合數= $\{\sum_{k=0}^{\lfloor a2/2 \rfloor} \sum_{j=0}^{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} \sum_{m=0}^{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} \sum_{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor} \sum_{i=0}^{\lfloor a2/2 \rfloor$

2. a2<0 且 a3<0 等負數組合數={ $\sum_{k=0}^{\lfloor a2/2 \rfloor} \sum_{j=0}^{\lfloor a2/2 \rfloor} \sum_{n} \dots \lfloor a2/2 \rfloor - \lfloor (a2+j+k+\cdots)/(n-2) \rfloor \} * C_2^n$

3.~a2<0 且 a3<0 且 a4<0 等負數組合數= $\{\sum_{k=0}^{[a2/2]}\Sigma.....[a2/2]-[(a2+k+\cdots)/(n-3)]\}*C_3^n$ 4. 其他情形類推,並根據排容原理進行算式計算可得全部 a2<0 或 a3<0 或 a4<0…組合數 (四)第二層第三種情況:行下有負數,且 al 為負數,根據階差公式可得 al<0 時,

負數組合數=C |a1| + n − 3

(五)第二層第四種情況:行下有負數,ai為負數,且2種組合有重複

(六)n 色變色組合數=全部組合數-負組合數

六、如何用最短路徑收斂於同一種顏色

(一)收斂同一種顏色的條件:在n色變色組合(a1, a2, a3···, an)中,除了a1之外,其他任 兩數相減為 n 的倍數,則收斂於 $(t,0,0,\cdots)$ 。

(二)收斂於同一種顏色的方法

在 n 色樹中的變色組合(a₁, a₂, a₃···, a_n)中,若最後收斂為(t, 0, 0, 0...)。

在收斂的過程中,

 $f=(-(n-1),+1,+1,+1,\cdots)$, $f=(+1,-(n-1),+1,+1,\cdots)$, $f=(+1,+1,-(n-1),+1,\cdots)$

且 f1 需做 x 次, f2 需做 y1 次, f3 需做 y2 次... fn 不用做,可知:

1. a2, a3,, a4. . . 任 2 數相減為 n 的倍數, 如果 a 也是如此,則可收斂於(t, 0, 0, 0…, 0), $(0, t, 0, 0 \cdots, 0)$, $(0, 0, t, 0 \cdots, 0)$, $(0, 0, 0, t \cdots, 0) \cdots \cdots \neq (0, 0, 0, 0 \cdots, t)$

2. 可列出以下算式

(1)a1=t-(n-1)*x+y1+y2+y3...

(2)a2=x-(n-1)*y1+y2+y3...

(3)a3=x+y1-(n-1)*y2+y3...

令z為變色組合最後一個數字,可列出算式

 $z=x+y1+y2+y3\cdots$

根據上述算式可解出 x, y1, y2, y3…,

 $x=(t+z-a_1)/n$

 $y1=(z-a_2)/n$

 $y2=(z-a_3)/n$

......其餘解答類推。

可根據解答進行最短路徑收斂

七、外接長方形長與寬:

(一)根據結論六-(二)可得,當t是n倍數,(t,0,0,···)到(0,0,···,t)聯立方程式如下

1. 0=t-(n-1)*x+(n-2)*y

2. 0=x-(n-1)*y+(n-3)y=x-2y

3. t=x+(n-2)*y

根據上述算式可解出 x, y:

x=2t/n, y=t/n

(x表示 f1 次數,y表示 f2,f3…次數)

(二)外接長方形:在(t,0,0,…),n種變色龍的情況下

1. 在電腦演算中:

(1)當 t=nk 時,長與寬:長= $\frac{n-1}{n}t$,寬= $\frac{2*(n-1)}{n}t$,外接長方形的右下角為 $(0,0,0\cdots,t)$

 $(2)x_{\#\$}=[2t/n], y_{\#\$}=[t/n]$

(3)當 t=nk+i, i∈{0,1,2···(n-1)}時,從(t,0,0,0..)倒堆最後結果如下

i=0, 可倒推至(0,0,0...,t)i=1,可倒推至(1,0,0..,t-1)

i=2, 可倒推至(2,0,0..,t-2)………其他類堆

i=n-1,可倒推至(0,1,1,1...,t-n+2)

2. 在 t=nk+z, $z∈{1,2···(n-1)}$ 時,外接長方形實際可倒推組合的右下角:

(1)當 z=1 時,以(n-2, n-3, n-3···, t-(n-2)²)結束

(2)當 $z \in \{2, 3, 4 \cdots (n-1)\}$ 時,以($z-2, n-2, n-2, n-2, n-2 \cdots, t-(n-2)^2 - z+2$)結束

(四)外接長方形的作用:透過外接長方形,讓我們在電腦運算時可以找到必須運算的範 圍。須知,有些變色組合原本是負數,但經過幾回合的運算後,會變為正數。有了外接 長方形的長與寬,讓我們知道要運算到哪一個範圍。

八、另一種列舉變色組合的方式:根據討論六與結論六-(一)我們可以知道,在 n 色變 色龍問題下,可依照變色條件以排列組合的方式列出全部的變色組合,並計算變色組合 數量。

九、未來研究方向

(一)簡化 n 種變色樹的變色組合數算法?

(二)如 n 種變色龍,m種相撞會變其他顏色,且 m<n-1 則會是什麼情況

捌、參考資料

一、游森棚 。2019-58-01 科學研習月刊。森棚教官的數學題 — 變色龍

二、許志農。動手玩數學第14期。破解秘笈

三、沈英琪…等四人。全國科展第四十七屆國中組 數學科。變色球遊戲的探討